Browse > Article
http://dx.doi.org/10.5762/KAIS.2014.15.6.3990

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number  

Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University)
Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.15, no.6, 2014 , pp. 3990-3996 More about this Journal
Abstract
Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.
Keywords
Nylon66/Glass Fiber; Composite; Thermal History; Physical Properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. V. Levchik, E. D Weil, and M. Lewin, Thermal decomposition of aliphatic nylons, Polym. Int, 48, 532-557 (1999). DOI: http://dx.doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R   DOI   ScienceOn
2 Y. Li, D. Yan, and E. Zhou, In situ Fourier transform IR spectroscopy and variable -temperature wide-angle X-ray diffraction studies on the crystalline transformation of melt- crystallized nylon1212, Colloid Polym. Sci., 280, 124-129 (2002). DOI: http://dx.doi.org/10.1007/s003960100571   DOI
3 E. C. Botelho, C. L. Nogueira, M. C. Rezende, Monitoring of nylon6,6/carbon fiber composites processing by X-ray diffraction and thermal analysis, J. of Appl. Polym. Sci., 86, 3114-3119 (2002). DOI: http://dx.doi.org/10.1002/app.11335   DOI   ScienceOn
4 R. K. Ayyer and A. I. Leonov, Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates, Rheol Acta, 43, 283-292 (2004). DOI: http://dx.doi.org/10.1007/s00397-003-0343-6   DOI   ScienceOn
5 G. Xu, G. Chen, Y. Ma, Y. Ke, and M. Han, Rheology of a low-filled polyamide6/ montmorillonite nanocomposite, J. of Appl. Poly. Sci., 108, 1501-1505 (2008). DOI: http://dx.doi.org/10.1002/app.27750   DOI   ScienceOn
6 F. D. Alsewailem1 and R. K. Gupta, Effect of Impact Modifier Types on Mechanical Properties of Rubber-Toughened Glass-Fibre-ReinforcedNylon 66, The Canadian J. of Chem. Eng., 84, 693-703, (2006).
7 D. M. Dhevi, C. W. Choi, A. A. Prabu, and K. J. Kim, Deterioration in mechanical properties of glass fiber-reinforced nylon 6,6 composites by aqueous calcium chloride mixture solutions, Polym. Composites, 30, 481-489 (2009). DOI: http://dx.doi.org/10.1002/pc.20613   DOI   ScienceOn
8 H. Yu, Y. Zhang, and W. Ren, Investigation on the fracture behavior and morphology of maleated poly(ethylene 1-octene) toughened and glass fiber-reinforced nylon 1010, J. of Appl. Poly. Sci., 113, 181-189 (2009). DOI: http://dx.doi.org/10.1002/app.29531   DOI   ScienceOn
9 J. H. Hong1, D. M. Dhevi, J. S. Lee, and K. J. Kim. Origin of deterioration in mechanical properties of glass fiber reinforced nylon 6,6 composites by aqueous ethylene glycol solution, Polym. Composites, 28, 778-784 (2007). DOI: http://dx.doi.org/10.1002/pc.20351   DOI   ScienceOn
10 H. Tohmyoh1, Y. Ito1, K. Eguchi, W. Daido, J. Utsunomiya, and Y. Nakano, Creep behavior of glass-fiber-reinforced nylon 6 products, J. of Appl. Poly. Sci., 124, 4213-4221 (2012). DOI: http://dx.doi.org/10.1002/app.35393   DOI   ScienceOn
11 N. L. Surampadia, N. K. Ramisettia, and R. D. K. Misraa, On scratch deformation of glass fiber reinforced nylon 66, Mater. Sci. and Eng.: A, 456, 230-235 (207).   DOI   ScienceOn
12 M. J. Lozano-Gonzalez, M. T. Rodriguez -Hernandez, E. A. G-D. L. Santos, and J. V.- Olmos, Physical-mechanical properties and morphological study on nylon6 recycling by injection molding, J. of Appli. Polym. Sci., 76, 851-858 (2000). DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(2000 0509)76:6<851::AID-APP11>3.0.CO;2-D   DOI
13 B. J. Holland and J. N. Hay, Thermal degradation of nylon polymers, Polym Int, 49, 943-948 (2000). DOI: http://dx.doi.org/10.1002/1097-0126(200009)49:9 <943::AID-PI400>3.0.CO;2-5   DOI   ScienceOn
14 R. P. Singh, S. M. Desai, and G. Pathak, Thermal decomposition kinetics of photooxidized nylon 66, J. of Appl. Polym. Sci., .87, 2146-2150 (2003). DOI: http://dx.doi.org/10.1002/app.11589   DOI   ScienceOn
15 M. A. Schaffer, K. B. McAuley,. E. K. Marchildon, and M. F. Cunningham, Thermal degradation kinetics of nylon66: experimental study and comparison with model predictions, Macromol. React. Eng., 1, 563-577 (2007). DOI: http://dx.doi.org/10.1002/mren.200700020   DOI
16 S. H. Zhang, G. Chen, C. Cui, C. Mi, and F. Tian, Study on Friction and Wear Behavior of Glass Fiber and Fly Ash Reinforced MC Nylon Composites, Advanced Tribology, 460-463 (2010).
17 S. Senthilvelan and R. Gnanamoorthy, Damping characteristics of unreinforced, glass and carbon fiber reinforced nylon 6/6 spur gears, Polymer Testing, 25, 56-62 (2006). DOI: http://dx.doi.org/10.1016/j.polymertesting.2005.09.005   DOI   ScienceOn
18 K. Y. Tsanga, D. L. DuQuesnaya, and P. J. Batesb, Fatigue properties of vibration-welded nylon 6 and nylon 66 reinforced with glass fibres, Composites Part B: Eng., 39, 396-404 (2008). DOI: http://dx.doi.org/10.1016/j.compositesb.2007.01.012   DOI   ScienceOn
19 B. S. Lee and B. C. Chun, Effect of nylon66 addition on the mechanical properties and fracture morphology of poly(phenylene sulfide)/glass fiber composites, Polym. Composites, 24, 191-198 (2003). DOI: http://dx.doi.org/10.1002/pc.10019   DOI   ScienceOn
20 B. Y. Lee, C. W. Jo, C. U. Shim, S. J. Lim, and Y. C. Kim, Effect of thermal history on the physical properties of Nylon 66, Appl. Chem. Eng., In Press (2014).