• Title/Summary/Keyword: Molecular phylogenetic tree

Search Result 259, Processing Time 0.021 seconds

Phylogenetic study of Korean Geranium(Geraniaceae) based on nrDNA ITS squences (ITS 염기서열에 의한 한국산 쥐손이풀속(Geranium)의 계통학적 연구)

  • Woo, Jeong Hyeon;Park, Seon-Joo
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.2
    • /
    • pp.91-108
    • /
    • 2006
  • Phylogenetic analyses were conducted to evaluate evolution and relationship of 16 taxa of Korean Geranium including 3 outgroups using ITS (internal transcribed spacer) squences of nuclear ribosomal DNA. Phylogenetic studies used most parsimony and neighbor-joining methods including bootstrapping and jackknifing analysis. As the result, Korean Geranium forms monophyletic group. In the parsimony tree G. koraiense var. hallasanense situated as the most basal clade and Erianthum group forms one clade by high bootstrap ans jackknife values (100% of bootstrap and jackknife values). G.dahuricum as one of the Krameri group is closely related with Palustre group by very weak relationship (37% of bootstrap and 44% of jackknife values) and the node collapse in the strict tree. G. Knuthii which was one of wilfordii group is closely related with Koreanum group. G. sibiricum, one of Sibiricum group, is the most closest relationship with G. soboliferum and these species are sister to G. krameri. G. tripartitum and G. wilfordii which are wilfordii group are linked to G. nepalense, G. thunbergii f. pallidum and G. thunbergii. This result suggested that the phylogenetic analysis of ITS sequences should be useful to address phylogenetic questions on the genus Korean Geranium.

Characterization and Phylogenetic Analysis of Chitin Synthase Genes from the Genera Sporobolomyces and Bensingtonia subrorea

  • Nam, Jin-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.335-342
    • /
    • 2005
  • We cloned seven genes encoding chitin synthases (CHSs) by PCR amplification from genomic DNAs of four strains of the genus Sporobolomyces and of Bensingtonia subrosea using degenerated primers based on conserved regions of the CHS genes. Though amino acid sequences of these genes were shown similar as 176 to 189 amino acids except SgCHS2, DNA sequences were different in size, which was due to various introns present in seven fragments. Alignment and phylogenetic analysis of their deduced amino acid sequences together with the reported CHS genes of basidiomycetes separated the sequences into classes I, II and III. This analysis also permitted the classification of isolated CHSs; SgCHS1 belongs to class I, BsCHS1, SaCHS1, SgCHS2, SpgCHS1, and SsCHS1 belong to class II, and BsCHS2 belongs to class III. The deduced amino acid sequences involving in class II that were discovered from five strains were also compared with those of other basidiomycetes by CLUSTAL X program. The bootstrap analysis and phylogenetic tree by neighbor-joining method revealed the taxonomic and evolutionary position for four strains of the genus Sporobolomyces and for Bensingtonia subrosea which agreed with the previous classification. The results clearly showed that CHS fragments could be used as a valuable key for the molecular taxonomic and phylogenetic studies of basidiomycetes.

Taxonomic Position and Affinities of Isopyrum mandshuricum within Korean Isopyroideae (Ranunculaceae) Based on Molecular Data

  • Lee, Nam-Sook;Yeau, Sung-Hee;Kim, Ji-Hyun;Kim, Min-Ju
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.133-141
    • /
    • 1999
  • To examine the taxonomic position and affinities of Isopyrum mandshuricum (Ranunculaceae) and related taxa, genetic analysis were carried out on the basis of isozyme patterns and ITS sequences. Molecular data, both isozyme patterns and ITS sequences suggest that I. mandshuricum is closely related to Enemion raddeanum than to Semiaquilegia adoxoides. The estimation of genetic identities by isozyme analysis reveals that I. manshuricum is genetically distant from E. raddeanum. The phylogenetic tree based on molecular data is rather congruent with the phenogram based on quantitative morphological characteristics, but not consistent with one based on qualitative morphological characteristics. Incongruencies between molecular and qualitative morphological data provide clues to re-evaluate several morphological features.

  • PDF

Secondary Structure and Phylogenetic Implications of ITS2 in the Genus Tricholoma

  • Suh, Seok-Jong;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.130-136
    • /
    • 2002
  • The internal transcribed spacer (ITS) region in the genus Tricholoma was analyzed, including for its primary nucleotide sequence and secondary structural characterization. The secondary structures of the ITS2 region in the genus Tricholoma were identified for use in bioinformatic processes to study molecular evolution and compare secondary structures. Ten newly sequenced ITS regions were added to the analysis and submitted to the GenBank database. The resulting structure from a minimum energy algorithm indicated the four-domain model, as previously suggested by others. The conserved secondary structure of the ITS2 sequences of the genus Tricholoma exhibited certain unique features, including pyrimidine tracts in the loops of domain A and a complete structure containing four domains, with motifs identified in other ITS2 secondary structures. A phylogenetic tree was derived from sequence alignment based on the secondary structures. From the resulting maximum parsimonious tree, it was found that the species in the genus Tricholoma had evolved monophyletically and were composed of four groups, as supported by the bootstrapping values and pileus color.

Molecular Phylogenetic Relationships Within the Genus Alexandrium(Dinophyceae) Based on the Nuclear-Encoded SSU and LSU rDNA D1-D2 Sequences

  • Kim, Choong-Jae;Sako Yoshihiko;Uchida Aritsune;Kim, Chang-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.39 no.3
    • /
    • pp.172-185
    • /
    • 2004
  • LSU rDNA D1-D2 and SSU rDNA genes of 23 strains in seven Alexandrium (Halim) species, A. tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid), A. fraterculus (Balech) Balech, A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo and A. tamiyavanichii Balech, were sequenced and the data were used for molecular phylogenetic analysis. The sequence data revealed 11 and 7 ribotypes in the LSU rDNA D1-D2 region and 4 and 17 ribotypes in the SSU rDNA region of A. catenella and A. tamarense, respectively. Other Alexandrium species had also 1 to 5 ribotypes in the two regions. With the exception of CMC2 and CMC3 of A. catenella, all A. tamarense and A. catenella strains had a common ribotype, a functionally expressed rRNA gene (here termed type A), in both gene regions. In addition to the functionally expressed gene, several pseudogenes were obtained that were found to be good tools to analyze the population designation of regional isolates by grouping them according to shared ribotypes. From the phylogenetic analysis of the sequence data determined in this study and retrieved from GenBank, the genus Alexandrium was divided into 14 groups: 1) A. tamarense, 2) A. excavatum, 3) A. catenella, 4) Tasmanian A. tamarense, 5) A. affine (and/or A. concavum), 6) Thai A. tamarense, 7) A. tamiyavanichii, 8) A. fraterculus, 9) A. margalefii, 10) A. andersonii, 11) A. ostenfeldii, 12) A. minutum (or A. lusitanicum), 13) A. insuetum, and 14) A. pseudogonyaulax. The SSU rDNA gene sequence of A. fundyense was so similar to those of A. tamarense used in this study that the two species were difficult to discriminate each other. A. tamiyavanichii was closest to the A. tamarense strain isolated in Thailand and close to the long chain-forming species of A. affine and A. fraterculus. The phylogenetic tree showed that A. margalefii, A. andersonii, A. ostenfeldii, A. minutum and A. insuetum constituted the basal relative complex, and that A. pseudogonyaulax is an ancestral taxon in the genus Alexandrium.

Identification of Some Phellinus spp.

  • Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.190-193
    • /
    • 2001
  • Four strains of Phellinus spp. was identified based on internal transcribed spacer(ITS) region of rDNA sequence analysis and morphological characteristics. Basidiocarps of all strains were effused-reflexed and hymenial surface was poroid. Hyphal system was dimitic and basidiospore was globose to ellipsoid. The amplification of ITS regions produced a DNA fragment of 500 to 780 by in all strains examined. The determined sequences were analyzed for the reconstruction of phylogenetic tree. From these results, Phellinus sp. KM-1, KM-2, and KM-4 was identified as P. hartigii, P. baumii, and P. linteus, respectively.

  • PDF

Genetic Diversity of Orobanche cumana Populations in Serbia

  • Ivanovic, Zarko;Marisavljevic, Dragana;Marinkovic, Radovan;Mitrovic, Petar;Blagojevic, Jovana;Nikolic, Ivan;Pavlovic, Danijela
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.512-520
    • /
    • 2021
  • In this study, we report genetic characterization of Orobanche cumana, the causal agent of sunflower wilting in Serbia. The genetic diversity of this parasitic plant in Serbia was not studied before. Random amplified polymorphic DNA (RAPD) markers and partial rbcL gene sequences analysis were used to characterize the O. cumana populations at the molecular level. While phylogenetic analyses of RAPD-PCR amplicons were performed using unweighted pair-group Method analyses, rbcL gene sequences were analyzed using neigbor joining method and minimum spanning tree. Molecular analyses of RAPD-PCR analysis revealed high genetic diversity of O. cumana populations which indicated high adaptive potential of this parasitic weed in Serbia. Further analyses of rbcL gene using minimum spanning tree revealed clear differences among diverse sections of Orobanche genus. Although this molecular marker lacked the resolution to display intrapopulation diversity it could be a useful tool for understanding the evolution of this parasitic plant. Our results suggested that O. cumana has great genetic potential which can lead to differentiation of more virulent races which is important for determining crop breeding strategies for their control.

Molecular Phylogenetic Classification of Dermatophytes Isolated from Dogs and Cats (개와 고양이 유래 피부사상균의 분자생물학적 계통 분석)

  • Kim, Doo;Jeoung, Seok-Young;Ahn, So-Jeo
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.405-410
    • /
    • 2006
  • Using internal transcribed spacer 1 (ITS1) region ribosomal DNA sequences from 9 strains of Microsporum canis and 5 strains of Microsporum gypseum isolated from dogs and a cat with dermatophytosis, we demonstrated the mutual phylogenetic relationship of these strains. Nucleotide sequence analysis of the ITS 1 gene fragments from the 9 strains of M canis had the 100% nucleotide sequence similarities and the 5 strains of M gypseum also had the 100% nucleotide sequence similarities. The phylogenetic analysis of the nucleotide sequences of the 9 strains of M canis formed a nested cluster with the reference strains of M canis originating from USA, Australia, Japan, and Europe. M canis were genetically distinct from the other reference strains of Microsporum spp, but M distortum, M equinum, and M. ferrugineum were genetically very close to M canis. M gypseum from a cluster in the phylogenetic tree with M canis as an outgroup. The molecular analysis of ITS 1 genes provided the useful information for the identification of these microsporum species and the understanding of their relationship.

Genetic Variation and Species Identification of Thai Boesenbergia (Zingiberaceae) Analyzed by Chloroplast DNA Polymorphism

  • Techaprasan, Jiranan;Ngamriabsakul, Chatchai;Klinbunga, Sirawut;Chusacultanachai, Sudsanguan;Jenjittikul, Thaya
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B. pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B. curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species.

Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria) (남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이)

  • Cheon, Ju-Yong;Lee, Min-Ah;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2012
  • In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.