DOI QR코드

DOI QR Code

Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria)

남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이

  • Cheon, Ju-Yong (Department of Green Life Science, Sangmyung University) ;
  • Lee, Min-Ah (Department of Green Life Science, Sangmyung University) ;
  • Ki, Jang-Seu (Department of Green Life Science, Sangmyung University)
  • 천주용 (상명대학교 그린생명과학과) ;
  • 이민아 (상명대학교 그린생명과학과) ;
  • 기장서 (상명대학교 그린생명과학과)
  • Received : 2012.11.28
  • Accepted : 2012.12.14
  • Published : 2012.12.31

Abstract

In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.

본 연구는 남조세균 흔들말목(Cyanobacteria, Oscillatoriales)의 16S ribosomal RNA (rRNA) 및 RNA polymerase beta subunit(rpoB) 유전자를 대상으로 염기서열 변이 및 분자계통학적 특성을 분석한 것이다. 흔들말목 rpoB 유전자는 16S rRNA보다 유전자 변이(유전거리: rpoB=0.270, 16S=0.109)가 큰 것으로 조사되었으며, 통계적으로 유의한 차이를 보였다(Student t-test, p<0.001). 흔들말목 16S rRNA와 rpoB의 계통분석에서 유사한 계통 분지형태를 보였으며, rpoB 유전자가 높은 해상도를 갖고 있어 흔들말목 분류군을 더 명확하게 구분하였다. 또한, parsimony 분석을 통해 rpoB 유전자가 16S rRNA 보다 2.40배 빠르게 진화하는 것으로 파악되었다. 본 연구결과는 rpoB 유전자가 흔들말목의 분자계통 및 종 분류 연구에 매우 유용하다는 것을 제시해 준다.

Keywords

References

  1. Anagnostidis, K. and Komarek, J. 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. 80, 327-472.
  2. Broady, P.A. and Kibblewhite, A.L. 1991. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct. 3, 35-45.
  3. Casamatta, D.A., Johansen, J.R., Vis, M.L., and Broadwater, S.T. 2005. Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J. Phycol. 41, 421-438. https://doi.org/10.1111/j.1529-8817.2005.04062.x
  4. Case, R.J., Boucher, Y., Dahllof, I., Holmstrom, C., Doolittle, W.F., and Kjelleberg, S. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278-288. https://doi.org/10.1128/AEM.01177-06
  5. Cheon, J.Y., Lee, M.A., and Ki, J.S. 2011. Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the species discrimination of harmful cyanobacteria Anabaena. Kor. J. Microbiol. 47, 268-274.
  6. Gaget, V., Gribaldo, S., and Tandeau de Marsac, N. 2011. An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. Int. J. Syst. Evol. Microbiol. 61, 170-183. https://doi.org/10.1099/ijs.0.019018-0
  7. Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J., and Pace, N.R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584-3592. https://doi.org/10.1128/jb.170.8.3584-3592.1988
  8. Gupta, R.S. 1997. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Antonie. van Leeuwenhoek. 72, 49-61. https://doi.org/10.1023/A:1000278224701
  9. Gupta, R.S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435- 1491.
  10. Honda, D., Yokota, A., and Sugiyama, J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48, 723-739. https://doi.org/10.1007/PL00006517
  11. Hong, S.K., Kim, B.J., Yun, Y.J., Lee, K.H., Kim, E.C., Park, E.M., Park, Y.G., Bai, G.H., and Kook, Y.H. 2004. Identification of Mycobacterium tuberculosis by PCR-linked reverse hybridization using specific rpoB oligonucleotide probes. J. Microbiol. Methods 59, 71-79. https://doi.org/10.1016/j.mimet.2004.06.004
  12. Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  13. Ishida, T., Watanabe, M.M., Sugiyama, J., and Yokota, A. 2001. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol. 201, 79-82. https://doi.org/10.1111/j.1574-6968.2001.tb10736.x
  14. Jensen, T.E. 1985. Cell inclusion in the cyanobacteria. Algol. 39, 33-73.
  15. Kaebernick, M. and Neilan, B.A. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol. 35, 1-9. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x
  16. Ki, J.S. 2010. Divergence analysis of 16S rRNA and rpoB gene sequences revealed from the harmful cyanobacterium Microcystis aeruginosa. Kor. J. Microbiol. 46, 296-302.
  17. Ki, J.S., Zhang, R., Zhang, W., Huang, Y.L., and Qian, P.Y. 2009. Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine Vibrio species. Microb. Ecol. 58, 679 -691. https://doi.org/10.1007/s00248-009-9519-7
  18. Marquardt, J. and Palinska, K.A. 2007. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from diVerent habitats and geographical sites. Arch. Microbiol. 187, 397-413. https://doi.org/10.1007/s00203-006-0204-7
  19. Nubel, U., Garcia-Pichel, F., and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332.
  20. Salerno, A., Deletoile, A., Lefevre, M., Ciznar, I., Krovacek, K., Grimont, P., and Brisse, S. 2007. Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J. Bacteriol. 189, 7808-7818. https://doi.org/10.1128/JB.00796-07
  21. Smith, P.T. 1996. Toxic effects of blooms of marine species of Oscillatoriales on farmed prawns (Penaeus monodon and P. japonicus) and brine shrimp (Artemia salina). Toxicon. 34, 857-869. https://doi.org/10.1016/0041-0101(96)00048-7
  22. Stanier, G. 1988. Fine structure of cyanobacteria. Meth. Enzymol. 167, 157-173. https://doi.org/10.1016/0076-6879(88)67017-0
  23. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  24. Thompson, J.D., Higgins, D.G., and Gibbson, T.J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4690. https://doi.org/10.1093/nar/22.22.4673
  25. Turner, S., Pryer, K.M., Miao, V.P.W., and Palmer, J.D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327-338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
  26. Volokhov, D.V., Neverov, A.A., George, J., Kong, H., Liu, S.X., Anderson, C., Davidson, M.K., and Chizhikov, V. 2007. Genetic analysis of housekeeping genes of members of the genus Acholeplasma: Phylogeny and complementary molecular markers to the 16S rRNA gene. Mol. Phylogenet. Evol. 44, 699-710. https://doi.org/10.1016/j.ympev.2006.12.001
  27. Wilmotte, A. and Herdman, M. 2001. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. Bergey's Manual of Systematic Bacteriology, 2nd ed., pp. 487-493. Springer-Verlag, New York, USA.

Cited by

  1. A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov.ICNP, Planktothrix tepida sp. nov.ICNP, and Planktothrix serta sp. nov.ICNP, as genus and species names with nomenclatural standing under the ICNP vol.38, pp.3, 2015, https://doi.org/10.1016/j.syapm.2015.02.004