• 제목/요약/키워드: Molecular pathway

검색결과 1,750건 처리시간 0.04초

Molecular dissection of OsSAD1 conferring salt-, ABA- and drought stresses in rice

  • Park, Yong Chan;Jang, Cheol Seong
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.149-149
    • /
    • 2017
  • The RING (Really Interesting New Gene) finger proteins are known to play crucial roles in various abiotic stresses in plants. In this study, we report on RING finger E3 ligase, ${\underline{O}ryza}$ ${\underline{s}ativa}$ ${\underline{s}alt$-, ${\underline{A}BA}$- and ${\underline{d}rounght}$ stress-${\underline{i}nduced}$ RING finger ${\underline{p}}rotein{\underline{1}}$ gene (OsSAD1). In vitro ubiquitination assay demonstrated that unlike OsSAD1, a single amino acid substitution ($OsSAD1^{C168A}$) of the RING domain showed no E3 ligase activity, supporting the notion that the activity of most E3s is specified by a RING domain. Result of Yeast-Two hybridization, In vivo protein degradation assay supports that OsSAD1 interacting with 3 substrate, OsSNAC2, OsGRAS44 and OsPIRIN1, and mediates proteolysis of 3 substrates via the 26S proteasome pathway. Subcellular localizations of OsSAD1 while approximately 62% of transient signals were detected in cytosol, 38% of signals were showed nucleus. However, transiently expression of OsSAD1 was detected in cytosol 30% while as 70% of nucleus under 200 mM salt treated rice protoplasts. Results of bimolecular fluorescence complementation (BiFC) showed that two nucleus-localized proteins (OsSNAC2 and OsGRAS44) interacted with OsSAD1 in the both cytosol and nucleus. Heterogeneous overexpression of OsSAD1 Heterogeneous overexpresssion of OsSAD1 in Arabidopsis exhibited sensitive phenotypes with respect to Salt-, mannitol-responsive seed germination, seedling growth. In ABA conditions, OsSAD1 overexpression plants showed highly tolerance phenotypes, such as root length and stomatal closure. Our findings suggest that the OsSAD1 may play a negative regulator in salt stress response by modulating levels of its target proteins.

  • PDF

Comparative proteome analysis of rice leaves in response to high temperature

  • Kim, Sang-Woo;Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Cho, Yong-Gu;Lee, Chul-Won;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.121-121
    • /
    • 2017
  • The productivity of rice has been influenced by various abiotic factors including temperature which cause to limitations to rice yield and quality. Rice yield and quality are adversely affected by high temperature globally. In the present study, four Korean four cultivars such as Dongan, Ilpum, Samkwang, Chucheong were investigated in order to explore molecular mechanisms of high temperature at seedling stage. Rice seedlings grown at $28/20^{\circ}C$ (day/night) were subjected to 7-day exposure to $38/28^{\circ}C$ for high-temperature stress, followed by 2-D based proteomic analysis on biological triplicates of each treatment. The growth characteristics demonstrated that Dongan is tolerant while Ilpum is sensitive to high-temperature stress. High temperature has an adverse effect in the seedling stage both in high temperature sensitive and tolerant cultivar. Two-dimensional gels stained with silver staining, a total of 722 differential expressed protein spots (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. However, a total of 38 differentially expressed protein spots were analyzed by LTQ-FT-ICR MS. Of these, 9 proteins were significantly increased while 10 decreased under high-temperature treatment. Significant changes were associated with the proteins involved in the carbohydrate metabolism, photosynthesis, and stress responses. Proteome results revealed that high-temperature stress had an inhibitory effect on carbon fixation, ATP production, and photosynthetic machinery pathway. The expression level of mRNA is significantly correlated with the results obtained in the proteome investigation. Taken together, these findings provide a better understanding of the high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

  • PDF

참도박의 Wnt 경로 활성화를 통한 모발성장 효과 (Hair-growth Promoting Effect of Grateloupia elliptica Via the Activation of Wnt Pathway)

  • 강정일;김상철;전유진;고영상;유은숙;강희경
    • 생약학회지
    • /
    • 제47권2호
    • /
    • pp.143-149
    • /
    • 2016
  • Grateloupia elliptica has been reported to have the proliferation effect of dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. In the present study, we examined in vitro and in vivo hair growth-promoting effect of Grateloupia elliptica. When isolated rat vibrissa follicles were treated with extract of G. elliptica, the hair-fiber lengths of the vibrissa follicles significantly increased. Furthermore, the G. elliptica extract accelerated the telogen-angen transition in C57BL/6 mice. To investigate the molecular mechanisms of the G. elliptica extract on the proliferation of DPCs, we examined the activation of $wnt/{\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. The G. elliptica extract activated $wnt/{\beta}$-catenin signaling via the increase of ${\beta}$-catenin and phospho-$GSK3{\beta}$. In addition, the G. elliptica extract increased the level of cyclin E and CDK2, while the level of $p27^{kip1}$ was decreased. These results suggest that the the G. elliptica extract may induce hair growth by proliferation of DPCs via cell-cycle progression and the activation of $Wnt/{\beta}$-catenin signaling.

원지(遠志)의 항염증 작용에 대한 연구 (Anti-inflammatory activity of the water extract of Polygala tenuifolia Willd)

  • 오현석;김병우
    • 대한한방내과학회지
    • /
    • 제34권2호
    • /
    • pp.204-214
    • /
    • 2013
  • Objectives : This study was designed to investigate the cellular and molecular mechanisms of anti-inflammatory activity of the water extract of Polygala tenuifolia Willd. (Pt-WE). Methods : Using lipopolysaccharide (LPS)-stimulated murine RAW264.7 cells, we examined inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$). Also, the inhibitory effect of Pt-WE on the activity of activator protein 1 (AP-1) and upstream signaling molecules was evaluated. To assess the protective effect of Pt-WE on hydrochloride/ethanol (HCl/EtOH)-induced gastric ulcer in mice, we compared Pt-WE (200 mg/kg) with ranitidine (50 mg/kg) treated mice's gastric mucosa, based on gross observations. Results : Pt-WE inhibited LPS-induced production of NO, $PGE_2$ in a dose-dependent manner, without causing cytotoxicity. Pt-WE suppressed AP-1 activation by reducing generations of both c-Jun and c-Fos. In addition, Pt-WE inhibited the p-MKK 4/7 (mitogen-activated protein kinase kinase 4/7) and p-JNK (c-Jun N-terminal kinase) 1 in LPS-stimulated RAW264.7 cells. HCl/EtOH-induced gastric ulcer lesions were inhibited by pre-treatment of Pt-WE based on gross observations. In addition, Pt-WE decreased the phosphorylation level of JNK. Conclusions : These results demonstrate that Pt-WE has anti-inflammatory and gastroprotective effects. Thus, Pt-WE may be used widely in treatment of not only neurodegenerative diseases but also inflammatory diseases.

류마티스 관절염에서 광금전초 추출물의 관절염 억제 효과 (Extracts of Desmodii Herba Suppresses of Rheumatoid Arthritis)

  • 노은미;송현경;김정미;이금산;권강범;이영래
    • 동의생리병리학회지
    • /
    • 제31권6호
    • /
    • pp.328-333
    • /
    • 2017
  • Desomodii Herba (DH) has been shown to exhibit pharmacologyical activities, such as increase myocaridal contraction and secretion of hepatic bile. DH is used to reduce pain caused by rheumatoid arthritis(RA) in Korean medicine. However, the DH exact(DHE) effect and mechanism on rheumatoid arthritis are unknown. In this study, we aimed at the inhibitory effect of DHE on rheumatoid arthritis, and investigated the effect in collagen-induced mice arthritis model and TNF-${\alpha}$ induced MMP-1 and MMP-3 expression including the molecular basis in rheumatoid arthritis synovial fibroblasts (RASFs).The effect of DHE on RA was measured by clinical scoring system. In RASFs, expression of MMP-1 and MMP-3 was assessed by Western blotting and real-time PCR. Also, Western blotting used to evaluate the phosphorylation levels of p38, ERK and JNK and activation of NF-${\kappa}B$ and AP-1. Our results showed that DHE reduced collagen-induced arthritis in mice. DHE inhibits TNF-${\alpha}$ induced MMP-1 and MMP-3 expression and mRNA levels in RASFs. The inhibitory effect of DHE was mediated by the inhibition of the AP-1/JNK signaling pathway. Taken together, our results suggest that the DHE may have preventive potential for rheumatoid arthritis.

Toxicogenomics Study on TK6 Human Lymphoblast Cells Treated with Mitomycin C

  • Kim, Joo-Hwan;Koo, Ye-Mo;Lee, Woo-Sun;Suh, Soo-Kyung;Kang, Jin-Seok;Han, Eui-Sik;Kim, Seung-Hee;Park, Sue-N.
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.165-171
    • /
    • 2007
  • Mitomycin C (MMC), an antitumor antibiotic isolated from Streptomyces caespitosus, is used in chemotherapy of gastric, bladder and colorectal cancer. MMC is activated in vivo to alkylate and crosslink DNA, via G-G interstrand bonds, thereby inhibiting DNA synthesis and transcription. This study investigates gene expression changes in response to MMC treatment in order to elucidate the mechanisms of MMC-induced toxicity. MMC was admistered with single dose (0.32 and 1.6 ${\mu}M$) to TK6 cells. Applied Biosystem's DNA chips were used for identifying the gene expression profile by MMC-induced toxicity. We identified up- or down-regulated 90 genes including cyclin M2, cyclin-dependent kinase inhibitor 1A (p21, cip1), programmed cell death 1, tumor necrosis factor (ligand) superfamily, member 9, et al. The regulated genes by MMC associated with the biological pathways apoptosis signaling pathway. Further characterization of these candidate markers related to the toxicity will be useful to understand the detailed mechanism of action of MMC.

음나무 수피로부터 보체계 활성화 다당의 정제 및 특성 (Purification and Characterization of Complement System Activating Polysaccharide from the Bark of Kalopanax pictus N.)

  • 신금;라경수;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권4호
    • /
    • pp.73-84
    • /
    • 1992
  • It was observed that the hot-water extract of the bark of Kalopanax pictus N. had the highest anti-complementary activity among the 11 kinds of forest materials. Methanol-and ethanol-soluble portions had low anti-complementary activities, but crude polysaccharide. HKP-0 had a high activity of 80%. HKP-0 contained 54.8% of total sugar and 27.9% of protein. The neutral sugars of HKP-0 consisted of mainly arabinose, galactose and glucose. HKP-4 fraction obtained by cetavlon treatment of HKP-0 showed the highest anti-complementary activity of 90%. The activity was not changed by pronase digestion bu decreased greatly by periodate oxidation. HKP-4 consisted of mainly arabinose and glucose with molar ratio of 1.0 : 22.4, HKP-4-I, an unabsorbed fraction from HKP-4 on DEAE Sepharose CL-6B column showed higher yield and activity than those of absorbed fractions. HKP-4-I was homogeneous, and its molecular weight was about 25,000. HKP-4-I contained 84.0% of neutral sugar and consisted of arabinose and glucose with molar ratio of 1.0 : 11.2. The anti-complementary activity of HKP-4-I was not decreased by the treatment of polymyxin B, and the polysaccharide activated both classical and alternative pathway in complement system. Void volume fraction obtained from HKP-4-I hydrolyzed with ${\alpha}$-amylase on Sephadex G-25 column only had a high anti-complementary activity.

  • PDF

Aldose Reductase Inhibitor Fidarestat as a Promising Drug Targeting Autophagy in Colorectal Carcinoma: a Pilot Study

  • Pandey, Saumya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4981-4985
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. Targeting autophagic cell death is emerging as a novel strategy in cancer chemotherapy. Aldose reductase (AR) catalyzes the rate limiting step of the polyol pathway of glucose metabolism; besides reducing glucose to sorbitol, AR reduces lipid peroxidation-derived aldehydes and their glutathione conjugates. A complex interplay between autophagic cell death and/or survival may in turn govern tumor metastasis. This exploratory study aimed to investigate the potential role of AR inhibition using a novel inhibitor Fidarestat in the regulation of autophagy in CRC cells. Materials and Methods: For glucose depletion (GD), HT-29 and SW480 CRC cells were rinsed with glucose-free RPMI-1640, followed by incubation in GD medium +/- Fidarestat ($10{\mu}M$). Proteins were extracted by a RIPA-method followed by Western blotting ($35-50{\mu}g$ of protein; n=3). Results: Autophagic regulatory markers, primarily, microtubule associated protein light chain (LC) 3, autophagy-related gene (ATG) 5, ATG 7 and Beclin-1 were expressed in CRC cells; glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used as an internal reference. LC3 II (14 kDa) expression was relatively high compared to LC3A/B I levels in both CRC cell lines, suggesting occurrence of autophagy. Expression of non-autophagic markers, high mobility group box (HMG)-1 and Bcl-2, was comparatively low. Conclusions: GD +/- ARI induced autophagy in HT-29 and SW-480 cells, thereby implicating Fidarestat as a promising therapeutic agent for colorectal cancer; future studies with more potent ARIs are warranted to fully dissect the molecular regulatory networks for autophagy in colorectal carcinoma.

Cytotoxic and Apoptotic Activites of Echinomycin Derivative (Echinomycin-7) on P388 Murine Leukemia Cells

  • Jeon, Hyang;Kim, Sung-Su;Kim, Yoon-Suk;Park, Yil-Sung;Kim, Yong-Hae;Choi, Sun-Ju;Kim, Soo-Kie;Kim, Tae-Ue
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.560-564
    • /
    • 1998
  • Echinomycin-7 is an echinomycin derivative, Smethylated sulfonium perchlorate of echinomycin. We studied the in vitro cytotoxicity and in vivo antitumor activity of echinomycin-7 against P388 leukemia cells and compared the results with echinomycin. With respect to the cytotoxic effects, echinomycin-7 had cell line-dependent $IC_{50}$ values while echinomycin had similar values to several tumor cell lines. Also, in vivo antitumor activities were observed in tumor-bearing mice treated with both agents, which showed that echinomycin-7 had a broad therapeutic dose range. We also observed the apoptosis on leukemia cells treated with echinomycin-7 which exihibited the ladder pattern of DNA on electrophoresis. In addition to apoptosis, echinomycin-7 arrested $G_1/S$ phases of the cell cycle at the same time. We then examined the signaling pathway of echinomycin-7-induced apoptosis and showed that ERK of the MAP kinase family was activated and translocated into the nucleus by echinomycin-7 stimulation. This study suggests that echinomycin-7 acts as an antitumor agent through in vitro cytotoxicity and has in vivo antitumor activity against leukemia cells, and that the echinomycin-7- induced apoptosis might involve signal transduction via MAP kinases.

  • PDF

miR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling

  • Lee, Jong Sub;Song, Dong Woo;Park, Jei Hyoung;Kim, Jin Ock;Cho, Chunghee;Kim, Do Han
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.208-213
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway.