• Title/Summary/Keyword: Molecular biological monitoring

Search Result 72, Processing Time 0.041 seconds

Adina rubella Phytocoena in Jeju Island, Korea (제주도 하천의 중대가리나무 식생)

  • Choi, Byoung-Ki;Ryu, Tae-Bok;Kim, Jong-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.68-76
    • /
    • 2015
  • There is no willow riparian vegetation in Jeju Island, Korea. Instead, a genetically-isolated population of Adina rubella is found in some parts of the riparian system. We describe its syntaxonomy and synecology. A total of 27 phytosociological relev$\acute{e}$s were collected, 11 relev$\acute{e}$s from 91 sites and 16 relev$\acute{e}$s from the previously published relevant materials. Data were analyzed by traditional Braun-Blanquet method and multivariate PCoA (Principal coordinates analysis). New syntaxa are distinguished, Adinion rubellae all. nov. and its type association Tripogono-Adinetum rubellae ass. nov. with two subassociations, typicum and rhododendretosum poukhanensae. Adino-Rhododendretum poukhanensae Itow et al. 1993 was discarded owing to mismatch of syntaxonomy and syngeography of Adina and Rhododendron phytocoena. The alliance Adinion is Jeju's regional and partly ombrotrophic vegetation occurring in pothole and rock crevice where are independent on ground-water table. We also suggest a revised alliance, Rhododendrion poukhanensae Lee 2004 ex. hoc loco in Korean peninsula, as a corresponding syntaxon to Adinion, which completely differs from Phragmito-Salicion. Finally we pointed out that Adina phytocoena requiring an absolutely monitoring has been threatened by river maintenance project of local government.

Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR (실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가)

  • Han, Ji-Sun;Seo, Jang-Won;Ji, Won-Hyun;Park, Hyun-Sung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Electrochemical Immunoassay based on the Dopamine-antigen Conjugate for Detecting Hippuric Acid (항원인 마뇨산에 결합된 도파민을 이용한 전기화학적 면역 분석법)

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.172-178
    • /
    • 2014
  • In this work, we describe an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid (HA). Urinary HA, of molecular weight 180 DA, is one of the major metabolites and biological indicators in toluene-exposed humans. Simple and ubiquitous monitoring of exposure to toluene is very important in occupational health care. We propose the electrochemical immunoassay based on the dopamine-antigen conjugate for detecting hippuric acid. Our electrochemical immunoassay system employs a conjugate of dopamine (DA) as an electrochemical active molecule and hippuric acid (HA) as an antigen. As an electrochemical aspect, dopamine (DA) containing two hydroxyl group can show excellent redox signal. Also, dopamine-tethered hippuric acid (DA-HA) shows the reversible redox signal in the immunoassay. The competition between HA and DA-HA generated electric signals proportional to HA concentration. The electrochemical immunoassay was performed with DA-HA on the screen printed carbon electrodes (SPCEs), and then applies the mixture antigen (HA) and HA-antibody. The electrical signals were proportional to HA in the range of 0.010~2.500 mg/mL which is enough range to be used for the point-of-care.

Gibberellin A4 Producted by Fusarium solani Isolated from the Roots of Suaeda japonica Makino (칠면초의 뿌리로부터 분리된 Fusarium solani에 의해 생산된 지베렐린 A4)

  • Seo, Yeonggyo;You, Young-Hyun;Yoon, Hyeokjun;Kang, Sang-Mo;Kim, Hyun;Kim, Miae;Kim, Changmu;Lee, In-Jung;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1718-1723
    • /
    • 2012
  • Ten endophytic fungi with different colony morphologies were isolated from the roots of Suaeda japonica Makino growing naturally in Suncheon Bay. Plant growth promotion was verified by treating waito-c rice seedlings with culture filtrates from the endophytic fungi. The bioassays showed that the Sj/7/4 fungal strain induced effective growth promotion in the seedlings. The gibberellins (GA) produced by fungal strain Sj/7/4 were analyzed by gas chromatography /mass spectroscopy with selected ion monitoring (GC/MS SIM). The culture filtrate of Sj/7/4 fungal strain was confirmed to contain $GA_4$ through quantitative analysis. The Sj/7/4 fungal strain was identified to determine the internal transcribed spacer (ITS) regions with universal primers ITS-1 and ITS-4 by using polymerase chain reactions (PCR). Molecular analysis of the Sj/7/4 fungal strain showed high similarity to Fusarium solani. The Sj/7/4 fungal strain isolated from the root of S. japonica was therefore designated as F. solani Sj/7/4.

Molecular cloning and expression pattern of Metallothionein Gene from the left-handed shell, Physa acuta (왼돌아물달팽이 (Physa acuta) 의 Metallothionein 유전자 클로닝 및 발현양상)

  • Jo, Yong-Hun;Baek, Moon-Ki;Kang, Se-Won;Lee, Jae-Bong;Byun, In-Seon;Choi, Sang-Haeng;Chae, Sung-Hwa;Kang, Jung-Ha;Han, Yeon-Soo;Park, Hong-Seog;Lee, Yong-Seok
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • Metallothioneins (MTs) play a key role in metallic homeostasis and detoxification in most living organisms. In an attempt to study the biological functions and significance of MT in a snail, we cloned and partially characterized the MT gene from the left-handed snail, Physa acutawhich has been regarded as a potential biomonitering species for fresh water. The complete cDNA sequence of PaMT cDNA was identified from the expressed sequence tag (EST) sequencing project of Physa acuta. The coding region of 180 bp gives 60 amino acid residues including the initiation methionine and termination codon. Clustering and phylogenic analysis of PaMT with other MT amino acid sequences show that it has some identities to Helix pomatia (60%), Arianta arbustorum (58%), Perna viridis (49%), Mytilus edulis (49%), Bathymodiolus azoricus (49%), Bathymodiolus azoricus (48%) and Bathymodiolus sp. FD-2002 (48%). Time dependent induction for PaMT from P. acuta exposed with cadmium (50 ppb) indicated that PaMT was induced at 4-8 hr after exposure. It remains to further develop PaMTas a potential biomarker for water contamination in fresh water.

  • PDF

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

Application of Molecular Biological Technique for Development of Stability Indicator in Uncontrolled Landfill (불량매립지 안정화 지표 개발을 위한 분자생물학적 기술의 적용)

  • Park, Hyun-A;Han, Ji-Sun;Kim, Chang-Gyun;Lee, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-136
    • /
    • 2006
  • This study was conducted for developing the stability parameter in uncontrolled landfill by using a biomolecular investigation on the microbial community growing through leachate plume. Landfill J(which is in Cheonan) and landfill T(which is in Wonju) were chosen for this study among a total of 244 closed uncontrolled landfills. It addressed the genetic diversity of the microbial community in the leachate by 165 rDNA gene cloning using PCR and compared quantitative analysis of denitrifiers and methanotrophs with the conventional water quality parameters. From the BLAST search, genes of 47.6% in landfill J, and 32.5% in landfill T, respectively, showed more than 97% of the similarity where Proteobacteria phylum was most significantly observed. It showed that the numbers of denitrification genes, i.e. nirS gene and cnorB gene in the J site are 7 and 4 times higher than those in T site, which is well reflecting from a difference of site closure showing 7 and 13 years after being closed, respectively. In addition, the quantitative analysis on methane formation gene showed that J1 spot immediately bordering with the sources has the greatest number of methane formation bacteria, and it was decreased rapidly according to distribute toward the outer boundary of landfill. The comparative investigation between the number of genes, i.e. nirS gene, cnorB gene and MCR gene, md the conventional monitoring parameters, i.e. TOC, $NH_3-N,\;NO_3-N,\;NO_2-N,\;Cl^-$, alkalinity, addressed that more than 99% of the correlation was observed except for the $NO_3-N$. It was concluded that biomolecular investigation was well consistent with the conventional monitoring parameters to interpret their influences and stability made by leachate plume formed in downgradient around the uncontrolled sites.

Thrips Infesting Hot Pepper Cultured in Greenhouses and Variation in Gene Sequences Encoded in TSWV (시설재배지 고추를 가해하는 총채벌레류와 TSWV 유전자 서열 변이)

  • Kim, Chulyoung;Choi, Duyeol;Kang, Jeong Hun;Ahmed, Shabbir;Kil, Eui-Joon;Kwon, Gimyeon;Lee, Gwan-Seok;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.387-401
    • /
    • 2021
  • Thrips infesting hot peppers were monitored in greenhouses using yellow sticky traps. In addition, the hot peppers infected with tomato spotted wilt virus (TSWV) were observed during the monitoring period. The flower thrips (Frankliniella intonsa) were initially trapped at a low density just after transplanting seedlings of hot peppers at late March. The western flower thrips (Frankliniella occidentalis) were trapped after mid April. These two thrips represented more than 98% of the total thrips attracted to the traps after May, in which F. intonsa showed higher occurrence frequency than F. occidentalis. The total number of thrips had two peaks at mid May with a small and short-term peak and at June-July with a large and long-term peak. The trapped thrips exhibited inconsistent sex ratios, suggesting a seasonal parthenogenesis. Different geographical populations were varied in cytochrome oxidase I sequences, in which local populations in Andong shared a high sequence similarity. TSWV-infected hot peppers, which might be mediated by these two thrips species, were observed and confirmed by an immunoassay kit and a molecular diagnosis using RT-PCR. In addition, the TSWV was detected in F. occidentalis collected from the infected hot peppers. Three open reading frames (NSS, N, and NSM) of the isolated TSWV genomes were sequenced and showed multiple point mutations containing missense mutations among geographical variants. When the isolated TSWV was fed to nonvirulent thrips of F. occidentalis, the virus was detected in both larvae and adults. However, the viral replication occurred in larvae, but not in adults.