Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR

실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가

  • Received : 2008.10.14
  • Accepted : 2010.01.13
  • Published : 2010.02.28

Abstract

Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.

산성광산배수(Acid Mine Drainage; AMD)는 낮은 pH조건에서 중금속 및 황산염이온 등이 다량 용존되어 환경오염 문제를 발생시킨다. 국내의 폐광산 일부에서는 산성광산배수를 처리하기 위해 정화시설이 운영되고 있으나 여전히 주변 하천에 영향을 미치고 있다. 본 연구는 산성광산배수 및 영향을 받는 하천에서 지표미생물의 특이적 유전자를 실시간 정량 중합효소 연쇄반응(Real-time quantitative Polymerase Chain Reaction; Real-time qPCR)을 이용하여 확인 및 정량함으로써 광산배수의 환경영향을 미생물학적으로 판단하고자 수행되었다. 지표 종으로 선정한 미생물은 16S rRNA 미생물 군집분석 결과 발견된 미생물 중 철환원균인 Rhodoferax ferrireducens T118, Acidiphilium cryptum JF-5이며 이 외에 기존에 광산에 존재하는 것으로 알려진 미생물 중 호산성 황환원균인 Desulfosporosinus orientus, 철산화균인 Leptosprillum ferrooxidans, 철 및 황산화균인 Acidothiobacillus ferrooxidans이었다. 최종적으로, 본 연구에서 각 광산의 광산배수가 하천에 미치는 영향을 정량적으로 판단하여 비교하기 위해 광산배수로 인한 하천에서의 미생물 변동 지수를 산정하였으며 연구 대상 4개 광산 중 광산배수 처리시설이 없는 삼탄의 광산배수의 경우 주변 방류 하천으로의 미생물학적 환경영향이 가장 큰것으로 나타났다

Keywords

References

  1. Fowler, T. A., Holmes, P. R. and Crundwell, F. K.," Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans,"Appl. Environ. Microbiol., 65, 2987-5292(1999).
  2. Hallberg, K. B. and Johnson, D. B.," Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine,"Sci. Total Environ., 338, 53-66(2005). https://doi.org/10.1016/j.scitotenv.2004.09.005
  3. Benner, S. G., Gould, W. D. and Blowes, D. W., "Microbial populations associated with the generation and treatment of acid mine drainage,"Chem. Geol., 169, 435-448(2000). https://doi.org/10.1016/S0009-2541(00)00219-9
  4. Amann, R. I., Ludwig, W. and Schleifer, K. H., "Phylogenetic identification and in situ detection of individual microbial cells without cultivation,"Microbiol. Rev., 59, 143-169(1995).
  5. Church, C. D., Wilkin, R. T., Alpers, C. N., Rye, R. O. and McCleskey, R. B., "Microbial sulfate reduction and metal attenuation in pH 4 acid mine water,"Geochem. Trans, 8(10) (2007).
  6. Bond, P. L. and Banfield J. F., "Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments,"Microb. Ecol., 41, 149-161(2001).
  7. David, E. C., Frank, C. Jr. and Stefan, S. R., "Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments,"Frank Rosenzweig Arch Microbiol., 171, 183-188 (1999). https://doi.org/10.1007/s002030050697
  8. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington D. C., USA(1988)
  9. Finneran, K. T., Johnsen, C. V. and Lovley, D. R. "Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)," Int. J. Syst. Evol. Microbiol., 53, 669-673(2003). https://doi.org/10.1099/ijs.0.02298-0
  10. Bilgin, A. A., Silverstein, J. and Jenkins, J. D.," Iron respiration by Acidiphilium cryptum at pH 5,"FEMS Microbiol. Ecol., 49, 137-143(2004). https://doi.org/10.1016/j.femsec.2003.08.018
  11. Konstantinidis, K. T., Isaacs, N., Fett, J., Simpson, S., Long, D. T. and Marsh, T. L., "Microbial diversity and resistance to copper in metal-contaminated lake sediment,"Microb. Ecol., 45, 191-202(2003). https://doi.org/10.1007/s00248-002-1035-y
  12. Luptakova, A. and Kusnierova, M., "Bioremediation of acid mine drainage contaminated by SRB,"Hydrometallurgy, 77, 97-102(2005). https://doi.org/10.1016/j.hydromet.2004.10.019
  13. Ovreas, L. and Torsvik, V.," Microbial diversity and community structure in two different agricultural soil communities," Microb. Ecol., 36, 303-315(1998). https://doi.org/10.1007/s002489900117
  14. Madigan, M. T. and Martinko, J. M., Brock Biology of Microorganisms, 11th ed, Benjamin Cummings, Pearson education(2005)