• Title/Summary/Keyword: Molecular biological monitoring

Search Result 72, Processing Time 0.044 seconds

Molecular Detection of Human Enteric Viruses in Urban Rivers in Korea

  • Lee, Cheong-Hoon;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1156-1163
    • /
    • 2008
  • We performed RT-nested PCR to study the distribution of human enteric viruses in urban rivers in Korea. During 2002-2003, water samples were collected from four rivers in Gyeonggi Province, South Korea. Among 58 samples, 45 (77.6%), 32 (55.2%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) showed positive results with adenoviruses (AdVs), enteroviruses (EVs), reoviruses (ReVs), hepatitis A viruses (HAVs), rotaviruses (RoVs), and sapoviruses (SVs), respectively. According to the binary logistic regression model, the occurrence of each enteric virus, except ReVs and HAVs, was not statistically correlated with the water temperature and levels of fecal coliforms (P<0.05). AdVs were most often detected; only 4 samples (6.9%) were negative for AdVs while positive for other enteric viruses in the studied sites. Our results indicated that monitoring human enteric viruses is necessary to improve microbial quality, and that AdVs detection by PCR can be a useful index for the presence of other enteric viruses in aquatic environments.

A Continuous Spectrophotometric Assay for NADPH-cytochrome P450 Reductase Activity Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide

  • Yim, Sung-Kun;Yun, Chul-Ho;Ahn, Tae-Ho;Jung, Heung-Chae;Pan, Jae-Gu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.366-369
    • /
    • 2005
  • NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450 and also catalyzes the one-electron reduction of many drugs and foreign compounds. Various spectrophotometric assays have been performed to examine electron-accepting properties of CPR and its ability to reduce cytochrome $b_5$, cytochrome c, and ferricyanide. In this report, reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by CPR has been assessed as a method for monitoring CPR activity. The principle advantage of this substance is that the reduction of MTT can be assayed directly in the reaction medium by a continuous spectrophotometric method. The electrons released from NADPH by CPR were transferred to MTT. MTT reduction activity was then assessed spectrophotometrically by measuring the increase of $A_{610}$. MTT reduction followed classical Michaelis-Menten kinetics ($K_m\;=\;20\;{\mu}M$, $k_{cat}\;=\;1,910\;min^{-1}$). This method offers the advantages of a commercially available substrate and short analysis time by a simple measurement of enzymatic activity of CPR.

Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers

  • Sahmani, Mehdi;Vatanmakanian, Mousa;Goudarzi, Mehdi;Mobarra, Naser;Azad, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.879-894
    • /
    • 2016
  • In micro-fluid systems, fluids are injected into extremely narrow polymer channels in small amounts such as micro-, nano-, or pico-liter scales. These channels themselves are embedded on tiny chips. Various specialized structures in the chips including pumps, valves, and channels allow the chips to accept different types of fluids to be entered the channel and along with flowing through the channels, exert their effects in the framework of different reactions. The chips are generally crystal, silicon, or elastomer in texture. These highly organized structures are equipped with discharging channels through which products as well as wastes of the reactions are secreted out. A particular advantage regarding the use of fluids in micro-scales over macro-scales lies in the fact that these fluids are much better processed in the chips when they applied as micro-scales. When the laboratory is miniaturized as a microchip and solutions are injected on a micro-scale, this combination makes a specialized construction referred to as "lab-on-chip". Taken together, micro-fluids are among the novel technologies which further than declining the costs; enhancing the test repeatability, sensitivity, accuracy, and speed; are emerged as widespread technology in laboratory diagnosis. They can be utilized for monitoring a wide spectrum of biological disorders including different types of cancers. When these microchips are used for cancer monitoring, circulatory tumor cells play a fundamental role.

A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds

  • Godschalk, Roger W.L.;Van Schooten, Frederik-Jan;Bartsch, Helmut
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention of chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria:i.adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined.iii. sources of inter- and intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAH-exposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with non-exposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intra-individual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurement may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. Biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurement as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.

Detection and Molecular Identification of Human Enteric Viruses in Urban Rivers in Korea

  • Lee, Cheong-Hoon;Kim, Sang-Jong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.171-171
    • /
    • 2008
  • We monitored the occurrence of human enteric viruses in urban rivers by cell culture-PCR and RT-nested PCR. Water samples were collected monthly or semimonthly between May 2002 and March 2003 in four urban tributaries. Enteric viruses were detected by RT-nested PCR and cell culture-PCR based on a combination of Buffalo Green monkey kidney (BGMK) and A549 cell lines, followed by phylogenetic analysis of amplicons. By RT-nested PCR analysis, 45 (77.6%), 32 (55.2%), 32 (55.2%), 26 (44.8%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) of 58 samples showed positive results with adenoviruses, enteroviruses, noroviruses (NV) genogroup I (GI) and II (GII), reoviruses, hepatitis A viruses, rotaviruses and sapoviruses, respectively. Adenoviruses were most often detected and only eight (13.8%) samples were negative for adenoviruses and positive for other enteric viruses in the studied sites. Thirty-one (77.5%) of the 40 samples were positive for infectious adenoviruses and/or enteroviruses based on cell culture-PCR, and the frequency of positive samples grown on A549 and BGMK (65.0%) was higher than that grown on BGMK alone (47.5%). The occurrence of each enteric virus, except reoviruses and hepatitis A viruses was not statistically correlated with the water temperature and levels of fecal coliforms according to Binary logistic regression model. By sequence analysis, most strains of adenoviruses and enteroviruses detected in this study are similar to the causative agent of viral diseases in Korea and most NV GI- and GII-grouped strains were closely related to the reference strains from China and Japan, and GII/4-related strains had similar sequences to strains recognized as a worldwide epidemic outbreak. Our results suggested that monitoring human enteric viruses is necessary to improve microbial quality and cell culture-PCR using the combination of A549 and BGMK cells and the adenovirus detection by PCR could be useful for monitoring viral contamination in the aquatic environment.

  • PDF

Molecular Biological Analysis of Fish Behavior as a Biomonitoring System for Detecting Diazinon

  • Shin, Sung-Woo;Chon, Tae-Soo;Kim, Jong-Sang;Lee, Sung-Kyu;Koh, Sung-Cheol
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.156-156
    • /
    • 2002
  • The goal of this study is to develop a biomarker used in monitoring abnormal behaviors of Japanese medaka (Oryzias latipes) as a model organism caused by hazardous chemicals that are toxic and persistent in the ecosystem. A widely used insecticide, diazinon (O, O-diethyl O- (2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate), is highly neurotoxic to fish, and it is also well known that it causes vertebral malformation and behavioral changes of fish at relatively low concentrations. The fish behaviors were observed on a real time basis using an image processing and automatic data acquisition system. The genes potentially involved in the abnormal behaviors were cloned using suppression subtractive hybridization (SSH) technique. The untreated individuals showed common behavioral characteristics. When the test fish was affected by diazinon at a concentration of 0.1 and 1 ppm, some specific patterns were observed in its behavioral activity and locomotive tracks. The typical patterns were enhanced surfacing activity, opercular movement, erratic movement, tremors and convulsions as reported previously. The number of genes up-regulated tty diazinon treatment were 97 which includes 27 of unknown genes. The number of down-regulated genes were 99 including 60 of unknown genes. These gene expression patterns will be analyzed by the artificial neural networks such as self organization map (SOM) and multilayer perceptron (MLP), revealing the role of genes responsible for the behaviors. These results may provide molecular biological and neurobehavioral bases of a biomonitoring system for diazinon using a model organism such as fish.

  • PDF

Trend of In Silico Prediction Research Using Adverse Outcome Pathway (독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석)

  • Sujin Lee;Jongseo Park;Sunmi Kim;Myungwon Seo
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong;Park, Ji-Ae;Kim, Jung Young;Lee, Ji Woong;Lee, Minkyung;Shin, Un Chol;Kang, Joo Hyun;An, Gwang Il;Lee, Kyo Chul;Ryu, Young Hoon;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.

A Novel Molecular Monitoring of Hyaluronic Acid Degradation using Quantum Dots

  • Kim, Ji-Seok;Hahn, Sei-Kwang;Kim, Sung-Jee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.251-251
    • /
    • 2006
  • A real time bio-imaging of HA degradation was successfully carried out using HA-quantum dot conjugates. HA-ADH with ADH content of ca. 70 mol% was synthesized and conjugated with quantum dots containing carboxyl terminal ligands which were activated by the addition of HOBt and EDC in DMSO. When the concentration of HA-ADH solution was higher than 4 wt%, HA-ADH hydrogels incorporating quantum dots could be synthesized in 30 minutes. These novel HA-quantum dot conjugates and the precursor solution of HA hydrogels incorporating quantum dots were injected to the nude mouse and investigated to elucidate the biological roles of HA in the body for various future tissue engineering applications.

  • PDF

MEASUREMENT OF SYNTHESIS RATE OF LONG-CHAIN ACYL-COENZYME A ESTER IN BOVINE LIVER BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

  • Mitsuhashi, T.;Mitsumoto, M.;Yamashita, Y.;Ozawa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.99-106
    • /
    • 1988
  • A high performance liquid chromatographic procedure is described for the direct determination of the picomole amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A, using a stainless steel column packed with C-18 derivatized porous silica ($5{\mu}m$), an isocratic elution with a mixture of 33 mM $KH_2PO_4$/acetonitrile as a mobile phase and a UV detector. The long-chain acyl-Coenzyme A esters were determined in incubated microsomal fractions of a bovine liver to demonstrate the utility of this method for monitoring acyl-CoA synthesis in biological samples. The reaction rate of palmitate was higher than that of stearate. After a 60 minute incubation period, the generated amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A were approximately 70 and 20 n mol/mg micresomal protein, respectively. The advantage of this method are in that no decomposition of the CoA esters is involved, while the constituent molecular species is detected.