DOI QR코드

DOI QR Code

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong (Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Park, Ji-Ae (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Jung Young (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Ji Woong (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Minkyung (Department of Nuclear Medicine, Inha University College of Medicine, Inha University Hospital) ;
  • Shin, Un Chol (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kang, Joo Hyun (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • An, Gwang Il (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Kyo Chul (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Ryu, Young Hoon (Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Kyeong Min (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences)
  • 투고 : 2016.10.21
  • 심사 : 2016.12.05
  • 발행 : 2016.12.30

초록

Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.

키워드

참고문헌

  1. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA: Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 1999;103:47-54. https://doi.org/10.1172/JCI3756
  2. Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15-18. https://doi.org/10.1053/sonc.2002.34874
  3. Chavakis E, Riecke B, Lin J, Linn T, Bretzel RG, Preissner KT, Brownlee M, Hammes HP: Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides. Diabetologia 2002;45:262-267. https://doi.org/10.1007/s00125-001-0727-z
  4. Eliceiri BP, Cheresh DA: Role of alpha v integrins during angiogenesis. Cancer J 2000;6:S245-249.
  5. Hynes RO, Bader BL, Hodivala-Dilke K: Integrins in vascular development. Braz J Med Biol Res 1999;32:501-510. https://doi.org/10.1590/S0100-879X1999000500002
  6. Guo WJ, Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Bio 2004;5:816-826. https://doi.org/10.1038/nrm1490
  7. Liu Z, Wang F, Chen X: Integrin alpha(v)beta(3)-Targeted Cancer Therapy. Drug Dev Res 2008;69:329-339. https://doi.org/10.1002/ddr.20265
  8. Millard M, Odde S, Neamati N: Integrin targeted therapeutics. Theranostics 2011;1:154-188. https://doi.org/10.7150/thno/v01p0154
  9. Niu G, Chen X: Why integrin as a primary target for imaging and therapy. Theranostics 2011;1:30-47. https://doi.org/10.7150/thno/v01p0030
  10. Ruoslahti E, Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491-497. https://doi.org/10.1126/science.2821619
  11. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ et al: Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [$^{18}F$]Galacto-RGD. PLoS Med 2005;2:e70. https://doi.org/10.1371/journal.pmed.0020070
  12. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui AM, Palmieri C et al: Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49:879-886. https://doi.org/10.2967/jnumed.107.049452
  13. Mirfeizi L, Walsh J, Kolb H, Campbell-Verduyn L, Dierckx RA, Feringa BL, Elsinga PH, de Groot T, Sannen I, Bormans G et al: Synthesis of [18F]RGD-K5 by catalyzed [3 + 2] cycloaddition for imaging integrin alphavbeta3 expression in vivo. Nucl Med Biol 2013;40:710-716. https://doi.org/10.1016/j.nucmedbio.2013.04.003
  14. Lee JW, Park JA, Lee YJ, Shin UC, Kim SW, Kim BI, Lim SM, An GI, Kim JY, Lee KC: New Glucocyclic RGD Dimers for Positron Emission Tomography Imaging of Tumor Integrin Receptors. Cancer Biother Radiopharm 2016;31:209-216. https://doi.org/10.1089/cbr.2016.2015
  15. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371-388. https://doi.org/10.1002/ana.410060502
  16. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL: Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834-840. https://doi.org/10.1097/00004647-199609000-00008
  17. Lammertsma AA, Hume SP: Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153-158. https://doi.org/10.1006/nimg.1996.0066
  18. Guo N, Lang L, Li W, Kiesewetter DO, Gao H, Niu G, Xie Q, Chen X: Quantitative analysis and comparison study of [$^{18}F$]AlF-NOTA-PRGD2, [$^{18}F$]FPPRGD2 and [$^{68}Ga$]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 2012;7:e37506. https://doi.org/10.1371/journal.pone.0037506
  19. Guo N, Lang L, Gao H, Niu G, Kiesewetter DO, Xie Q, Chen X: Quantitative analysis and parametric imaging of $^{18}F$-labeled monomeric and dimeric RGD peptides using compartment model. Mol Imaging Biol 2012;14:743-752. https://doi.org/10.1007/s11307-012-0541-7
  20. Liu S: Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 2009;20:2199-2213. https://doi.org/10.1021/bc900167c
  21. Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, von Guggenberg E, Pichler BJ, Virgolini I, Decristoforo C et al: [$^{68}Ga$]NODAGA-RGD for imaging alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2011;38:1303-1312. https://doi.org/10.1007/s00259-011-1778-0
  22. Dumont RA, Deininger F, Haubner R, Maecke HR, Weber WA, Fani M: Novel $^{64}Cu$- and $^{68}Ga$-labeled RGD conjugates show improved PET imaging of alpha(nu) beta(3) integrin expression and facile radiosynthesis. J Nucl Med 2011;52:1276-1284. https://doi.org/10.2967/jnumed.111.087700