DOI QR코드

DOI QR Code

Trend of In Silico Prediction Research Using Adverse Outcome Pathway

독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석

  • Sujin Lee (Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT)) ;
  • Jongseo Park (Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT)) ;
  • Sunmi Kim (Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT)) ;
  • Myungwon Seo (Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT))
  • 이수진 (한국화학연구원 화학분석센터) ;
  • 박종서 (한국화학연구원 화학분석센터) ;
  • 김선미 (한국화학연구원 화학분석센터) ;
  • 서명원 (한국화학연구원 화학분석센터)
  • Received : 2024.04.02
  • Accepted : 2024.04.24
  • Published : 2024.04.30

Abstract

Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

Keywords

Acknowledgement

This study was supported by Korea Environmental Industry & Technology Institute (KEITI; Project no. RS-2023-00215857). We are grateful to Jiwon Choi at Korea Research Institute of Chemical Technology for assistance with data collection.

References

  1. Reddy N, Lynch B, Gujral J, Karnik K. Alternatives to animal testing in toxicity testing: current status and future perspectives in food safety assessments. Food Chem Toxicol. 2023; 179: 113944. 
  2. Russell WM, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. 
  3. Korea Institute of Science & Technology Evaluation and Planning. Animal replacement test. Available: https://www.kistep.re.kr/board.es?mid=a10306010000&bid=0031&act=view&list_no=34987 [accessed 26 March 2024]. 
  4. Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm J. 2015; 23(3): 223-229.  https://doi.org/10.1016/j.jsps.2013.11.002
  5. National Institute of Environmental Research (NIER). A study on structural alerts and application of (Q)SARs for mutagenicity screening. Available: https://scienceon.kisti.re.kr/srch/select-PORSrchReport.do?cn=TRKO201300007514 [accessed 26 March 2024]. 
  6. National Institute of Environmental Research (NIER). Study on the improvement of genotoxicity prediction using QSARs models. Available: https://doi.org/10.23000/TRKO201900002677 [accessed 26 March 2024]. 
  7. Lee S. Trends in research on alternative to animal experiments for safety evaluation of cosmetic ingredients. Korean Soc Cosmet Cosmetol. 2023; 13(2): 359-368. 
  8. National Institute of Environmental Research (NIER). Guidelines for submitting QSAR data for industry. Available: https://ecolibrary.me.go.kr/nier/#/search/detail/5704414 [accessed 26 March 2024]. 
  9. European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018; 16(6): e05311. 
  10. National Institute of Environmental Research (NIER). A study for the improvement of a prediction using QSAR models to find out hazardous substances(I). Available: https://doi.org/10.23000/TRKO201900003829 [accessed 26 March 2024]. 
  11. Kang D, Jang SW, Lee SW, Lee JH, Lee SH, Kim P, et al. Applicability of QSAR models for acute aquatic toxicity under the act on registration, evaluation, etc. of chemicals in the Republic of Korea. J Environ Health Sci. 2022; 48(3): 159-166.  https://doi.org/10.5668/JEHS.2022.48.3.159
  12. Jeong J, Choi J. Artificial intelligence-based toxicity prediction of environmental chemicals: future directions for chemical management applications. Environ Sci Technol. 2022; 56(12): 7532-7543.  https://doi.org/10.1021/acs.est.1c07413
  13. Organisation for Economic Co-operation and Development (OECD). Users' handbook supplement to the guidance document for developing and assessing adverse outcome pathways. Paris: OECD Publishing; 2016. 
  14. Lee I, Lee S, Ji K. A screening method to identify potential endocrine disruptors using chemical toxicity big data and a deep learning model with a focus on cleaning and laundry products. J Environ Health Sci. 2021; 47(5): 462-471.  https://doi.org/10.5668/JEHS.2021.47.5.462
  15. Tan H, Wu J, Zhang R, Zhang C, Li W, Chen Q, et al. Development, validation, and application of a human reproductive toxicity prediction model based on adverse outcome pathway. Environ Sci Technol. 2022; 56(17): 12391-12403.  https://doi.org/10.1021/acs.est.2c02242
  16. Troger F, Delp J, Funke M, Van Der Stel W, Colas C, Leist M, et al. Identification of mitochondrial toxicants by combined in silico and in vitro studies - a structure-based view on the adverse outcome pathway. Comput Toxicol. 2020; 14: 100123. 
  17. Gadaleta D, Spinu N, Roncaglioni A, Cronin MTD, Benfenati E. Prediction of the neurotoxic potential of chemicals based on modelling of molecular initiating events upstream of the adverse outcome pathways of (developmental) neurotoxicity. Int J Mol Sci. 2022; 23(6): 3053. 
  18. Wang CC, Lin YC, Wang SS, Shih C, Lin YH, Tung CW. SkinSensDB: a curated database for skin sensitization assays. J Cheminform. 2017; 9: 5. 
  19. Allen TE, Goodman JM, Grayson MN, Gutsell S, Russell PJ. Computational approaches for predicting molecular initiating events. Toxicol Lett. 2018; 295(Suppl 1): S99-S100.  https://doi.org/10.1016/j.toxlet.2018.06.605
  20. Gadaleta D, Manganelli S, Roncaglioni A, Toma C, Benfenati E, Mombelli E. QSAR modeling of ToxCast assays relevant to the molecular initiating events of aops leading to hepatic steatosis. J Chem Inf Model. 2018; 58(8): 1501-1517.  https://doi.org/10.1021/acs.jcim.8b00297
  21. Allen TE, Gelzinyte E, Wedlake AJ, Goodman JM, Gutsell S, Russell PJ. Gaining insight into toxicity predicting machine learning algorithms. Toxicol Lett. 2019; 314; S280. 
  22. Kurosaki K, Wu R, Uesawa Y. A toxicity prediction tool for potential agonist/antagonist activities in molecular initiating events based on chemical structures. Int J Mol Sci. 2020; 21(21): 7853. 
  23. Uesawa Y. [AI-based QSAR modeling for prediction of active compounds in MIE/AOP]. Yakugaku Zasshi. 2020; 140(4): 499-505. Japanese.  https://doi.org/10.1248/yakushi.19-00190-4
  24. Matsuzaka Y, Uesawa Y. Molecular image-based prediction models of nuclear receptor agonists and antagonists using the DeepSnapDeep Learning approach with the Tox21 10K library. Molecules. 2020; 25(12): 2764. 
  25. Allen TEH, Goodman JM, Gutsell S, Russell PJ. Quantitative predictions for molecular initiating events using three-dimensional quantitative structure-activity relationships. Chem Res Toxicol. 2020; 33(2): 324-332.  https://doi.org/10.1021/acs.chemrestox.9b00136
  26. Ivanova H, Dimitrova G, Kuseva C, Schultz TW, Mekenyan OG. Modeling hazard assessment of chemicals based on adducts formation. I. A basis for inclusion of kinetic factors in simulating skin sensitization. Comput Toxicol. 2020; 15: 100130. 
  27. Morger A, Mathea M, Achenbach JH, Wolf A, Buesen R, Schleifer KJ, et al. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J Cheminform. 2020; 12(1): 24. 
  28. Garcia de Lomana M, Weber AG, Birk B, Landsiedel R, Achenbach J, Schleifer KJ, et al. In silico models to predict the perturbation of molecular initiating events related to thyroid hormone homeostasis. Chem Res Toxicol. 2021; 34(2): 396-411.  https://doi.org/10.1021/acs.chemrestox.0c00304
  29. Ciallella HL, Russo DP, Aleksunes LM, Grimm FA, Zhu H. Revealing adverse outcome pathways from public high-throughput screening data to evaluate new toxicants by a knowledge-based deep neural network approach. Environ Sci Technol. 2021; 55(15): 10875-10887.  https://doi.org/10.1021/acs.est.1c02656
  30. Jagiello K, Halappanavar S, Rybinska-Fryca A, Willliams A, Vogel U, Puzyn T. Transcriptomics-based and AOP-informed structure-activity relationships to predict pulmonary pathology induced by multiwalled carbon nanotubes. Small. 2021; 17(15): e2003465. 
  31. Bringezu F, Gomez-Tamayo JC, Pastor M. Ensemble prediction of mitochondrial toxicity using machine learning technology. Comput Toxicol. 2021; 20: 100189. 
  32. Jeon B, Lim MH, Choi TH, Kang BC, Kim S. A development of a graph-based ensemble machine learning model for skin sensitization hazard and potency assessment. J Appl Toxicol. 2022; 42(11): 1832-1842.  https://doi.org/10.1002/jat.4361
  33. Spinu N, Cronin MTD, Lao J, Bal-Price A, Campia I, Enoch SJ, et al. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Comput Toxicol. 2022; 21: 100206. 
  34. Guan R, Li N, Wang W, Liu W, Li X, Zhao C. The adverse outcome pathway (AOP) of estrogen interference effect induced by triphenyl phosphate (TPP): integrated multi-omics and molecular dynamics approaches. Ecotoxicol Environ Saf. 2022; 234: 113387. 
  35. Sakhteman A, Ghosh A, Fortino V. EDTox: an R Shiny application to predict the endocrine disruption potential of compounds. Bioinformatics. 2022; 38(7): 2066-2069.  https://doi.org/10.1093/bioinformatics/btac045
  36. Jin Y, Qi G, Shou Y, Li D, Liu Y, Guan H, et al. High throughput data-based, toxicity pathway-oriented development of a quantitative adverse outcome pathway network linking AHR activation to lung damages. J Hazard Mater. 2022; 425: 128041. 
  37. Paini A, Campia I, Cronin MTD, Asturiol D, Ceriani L, Exner TE, et al. Towards a qAOP framework for predictive toxicology - linking data to decisions. Comput Toxicol. 2022; 21: 100195. 
  38. Belfield SJ, Firman JW, Enoch SJ, Madden JC, Erik Tollefsen K, Cronin MTD. A review of quantitative structure-activity relationship modelling approaches to predict the toxicity of mixtures. Comput Toxicol. 2023; 25: 100251. 
  39. Romano JD, Mei L, Senn J, Moore JH, Mortensen HM. Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science. Comput Toxicol. 2023; 25: 100261. 
  40. Bahl A, Ibrahim C, Plate K, Haase A, Dengjel J, Nymark P, et al. PROTEOMAS: a workflow enabling harmonized proteomic metaanalysis and proteomic signature mapping. J Cheminform. 2023; 15(1): 34. 
  41. Kim S. Research needs for mixture risk assessment and use of the mixture allocation factor (MAF). J Environ Health Sci. 2023; 49(6): i-ii. 
  42. Kim S, Kang K, Kim J, Na M, Choi J. Toxicity of organophosphorus flame retardants (OPFRs) and their mixtures in Aliivibrio fischeri and human hepatocyte HepG2. J Environ Health Sci. 2023; 49(2): 89-98.  https://doi.org/10.5668/JEHS.2023.49.2.89
  43. Kim MI, Kim SM, Shin JH. Global emerging environmental issues. In: Kho YL, Kim KT, Kim MI, Kim JS, Kim CS, Kim HH, et al. editors. Environmental health practice. Seoul: Shinkwang; 2023. p.1523-1541. 
  44. United States Environmental Protection Agency. ToxCast dashboard. Available: https://comptox.epa.gov/dashboard/chemical_lists/toxcast [accessed 20 August 2021]. 
  45. National Institute of Environmental Health Sciences. Tox21: toxicology in the 21st Century. Available: https://ntp.niehs.nih.gov/whatwestudy/tox21/index.html [accessed 20 August 2021]. 
  46. Rotroff DM, Dix DJ, Houck KA, Knudsen TB, Martin MT, McLaurin KW, et al. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals. Environ Health Perspect. 2013; 121(1): 7-14.  https://doi.org/10.1289/ehp.1205065
  47. Wang XH, Fan LY, Wang S, Wang Y, Yan LC, Zheng SS, et al. Relationship between acute and chronic toxicity for prevalent organic pollutants in Vibrio fischeri based upon chemical mode of action. J Hazard Mater. 2017; 338: 458-465.  https://doi.org/10.1016/j.jhazmat.2017.05.058
  48. Breiman L. Random forests. Mach Learn. 2001; 45: 5-32.  https://doi.org/10.1023/A:1010933404324
  49. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20: 273-297.  https://doi.org/10.1007/BF00994018
  50. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7): 1527-1554.  https://doi.org/10.1162/neco.2006.18.7.1527
  51. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86(11): 2278-2324.  https://doi.org/10.1109/5.726791
  52. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv. 1609.02907 [Preprint]. 2016 [cited 26 March 2024]. Available: https://doi.org/10.48550/arXiv.1609.02907. 
  53. Uesawa Y. Quantitative structure-activity relationship analysis using deep learning based on a novel molecular image input technique. Bioorg Med Chem Lett. 2018; 28(20): 3400-3403.  https://doi.org/10.1016/j.bmcl.2018.08.032
  54. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016; 3: 80. 
  55. Jain S, Siramshetty VB, Alves VM, Muratov EN, Kleinstreuer N, Tropsha A, et al. Large-scale modeling of multispecies acute toxicity end points using consensus of multitask deep learning methods. J Chem Inf Model. 2021; 61(2): 653-663.  https://doi.org/10.1021/acs.jcim.0c01164
  56. Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, et al. Permethrin is a potential thyroid-disrupting chemical: in vivo and in silico envidence. Aquat Toxicol. 2016; 175: 39-46. https://doi.org/10.1016/j.aquatox.2016.03.006