• 제목/요약/키워드: Molecular Manufacturing

검색결과 184건 처리시간 0.026초

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • 한국자기공명학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.

분자영상의 윤리 및 규제 (Ethical and Regulatory Problems of Molecular Imaging)

  • 정재민
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.140-142
    • /
    • 2004
  • As a molecular imaging is the most up-to-date technology in Nuclear Medicine, it has complicate ethical and regulatory problems. For animal experiment, we have to follow institutional animal care committee. for clinical experiment, we have to get approval of Institutional Review Board according to Helsinki declaration. In addition, approval from Korea Food and Drug Administration (KFDA) is essential for manufacturing and commercialization. However, too much regulation would suppress development of new technology, which would result in the loss of national competitive power. In addition, most new radioactive ligands for molecular imaging are administered to human at sub-pharmacological and sub-toxicological level. In conclusion, a balanced regulation is essential for the safety of clinical application and development of new technology.

Molecular Dynamics Simulation for Size-Dependent Properties and Various Nanoscale Phenomena

  • Seungho;Joon Sik;Young Ki;Sung San;Jung Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.28-35
    • /
    • 2004
  • Stimulated by novel phenomena observed in molecular aggregates, recent developments in engineering fields of microscopic scales are creating tremendous opportunities for future nanotechnology-based applications. Investigation in the field involves sub-nanosecond or sub-micrometer interactions between extremely small systems, but researches, to date in these physical extremes have been quite limited. Here, we shed light on some of nanoscale phenomena using molecular dynamics simulation: visualization of various phenomena of nanoscales and exploration of size-dependent mechanical properties.

나노-바이오 매니퓰레이션 기술의 현황 및 전망 (State-of-the Art Review in Nano-Biomanipulation Technologies)

  • 김덕호;김병규;박종오;주병권
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.353-362
    • /
    • 2005
  • This article describes a state-of-the art review in nano-biomanipulation technologies. Nanomanipulation of biological objects enables an in-depth study of single molecules such as DNA and RNA, and of biophysical events at the molecular level like molecular motors. Controlled nanomanipulation is challenging but essential for precisely engineering biomolecules or cells and for manufacturing functional nano-biosystems. In this paper, we summarize several contact, non-contact and hybrid methods available for nanomanipulation of biological objects. Advantages currently available methods and their limitations are also compared. Finally, we discuss possible applications of nano-biomanipulation technologies to life science and molecular medicine including cell biology, genetic engineering, biophysics, and biochemistry.

나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구 (Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate)

  • 고선미;정흥철;;최경민;김덕줄
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF

가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용 (Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes)

  • 정서경;하성민;이영석
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.488-495
    • /
    • 2022
  • 온실가스의 회수 및 분리를 위한 다공성 물질로 활성탄소와 탄소분자체가 주목을 받아왔다. 균일한 기공을 가지는 탄소분자체는 특정 가스를 선택적으로 흡착할 수 있기 때문에 가스의 포집 및 분리에 사용되고 있다. 탄소분자체의 성능은 세공의 크기 및 균일성에 따라 좌우되는데, 이러한 탄소분자체의 미세 기공 제어를 위하여 표면을 일정한 두께로 코팅할 수 있는 화학기상증착법이 널리 사용 되고 있다. 이 화학기상증착법은 탄소분자체 제조 시 기공의 크기를 제어하는데 사용될 수 있으나, 그 실험 변수가 다양하기 때문에 이에 대한 최적화가 필요하다. 따라서, 본 총설에서는 가스 흡착 및 분리공정용 활성탄소와 탄소분자체를 제조하기 위하여 여러 가지 활성화 공정, 화학기상증착법과 표면처리 등에 의한 기공 제어 기술들을 중심으로 다루고자 한다.

Microwave Radiation Effects on the Process of Escherichia coli Cultivation

  • Kuznetsov, Denis;Volkhin, Igor;Orlova, Ekaterina;Neschislyaev, Valery;Balandina, Alevtina;Shirokikh, Anna
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.372-380
    • /
    • 2019
  • Modern biotechnological industries have been attempting to improve the efficiency of bacterial strain cultivation. Millimeter wave electromagnetic radiation can have a varied influence on E. coli cultivation processes. The results of the study revealed that when a microwave radiation of low intensity is applied to positively adjust the conditions for the accumulation of bacterial culture biomass, a significant role is played not only by radiation parameters, but also by concomitant biological factors, which influence the reproducibility of the cultivation process and help obtain a useful biotechnological effect. The authors suggest a model that can be used to study the molecular mechanisms underlying the changes in the buildup of E. coli biomass under the influence of electromagnetic radiation.

메타로센 촉매를 이용한 저밀도 폴리에틸렌의 전기적 특성 (Electrical Properties Low-Density Polyethylene by use of Metallocene Catalyst)

  • 조돈찬;;;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.123-127
    • /
    • 2000
  • In order to investigate the influence of manufacturing process on the electrical properties, we used two kinds of low density polyethylene prepared using metallocene catalyst (mL), linear low density polyethylene prepared using Ziegler catalyst (LL) and low density polyethylene by high pressure process (LD). mL has the narrowest composition and molecular weight distributions. We measured the dc and impulse breakdown strengths and current densities at 3$0^{\circ}C$, 6$0^{\circ}C$ and 9$0^{\circ}C$. mL had a higher breakdown strength and a lower high-field current than LD and LL. These results were discussed from the point of manufacturing processes.

  • PDF

Considerations for Making Liposomes by Thin Film-Hydration Method

  • Gyeong-Tak Byeon;Ji-Yoon Son;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.151-156
    • /
    • 2022
  • Liposomes are bilayered particles that are surrounded by an aqueous solvent with amphiphilic substances such as phospholipids. Liposomes have the potential to overcome the limitations of physiochemical properties of existing drugs, and are therefore widely used in research for the treatment of many diseases, especially cancer. Currently, there are many liposome manufacturing methods that use various lipids and amphiphiles. Among them, the thin film-hydration method is a traditional and very simple method to prepare liposomes by hydrating a dry lipid film in an aqueous solvent, which has been widely used in the laboratory until recently. Recently, approaches to new nuclear imaging agents and radiotherapy by loading radioactive isotopes inside liposomes have been actively studied. In this review, we would like to discuss considerations for preparing liposomes using the thin film-hydration method.