• Title/Summary/Keyword: Molecular Ecological Detection

Search Result 11, Processing Time 0.021 seconds

The Cause Analysis of Pitting Corrosion on the Waterjet Impeller (물분사 추진기 임펠러 부식에 대한 원인분석)

  • Lee, Hyeong-Sin;Jung, Un-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.545-551
    • /
    • 2020
  • Cause analysis of surface pitting crack on a waterjet impeller was conducted. The waterjet impeller was made from stainless steel duplex 2205, which is more resistant to corrosion and local corrosion than typical stainless steel 316L and 317L, and has high mechanical strength, making it a useful material in various marine structures and seawater desalination facilities. The measurements were taken by scanning electron microscopy (SEM) and molecular ecological detection. The chemical composition of S was examined by SEM in the area of pitting corrosion. The dsrAB gene was detected on the sample of the pitting corrosion of the impeller through molecular ecological detection. Therefore, pitting corrosion on the surface of a waterjet impeller was caused by sulphite-reducing bacteria (SRB). To prevent the spread of SRB, management is required through high temperature treatments (over 65℃), pH management, or the insulation of a hull and waterjet.

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

Preliminary Application of Molecular Monitoring of the Pacific Herring (Clupea pallasii) Based on Real-time PCR Assay Utilization on Environmental Water Samples

  • Kim, Keun-Yong;Heo, Jung Soo;Moon, Seong Yong;Kim, Keun-Sik;Choi, Jung-Hwa;Yoo, Joon-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.209-220
    • /
    • 2021
  • Pacific herring, Clupea pallasii, a keystone species with significant ecological and commercial importance, is declining globally throughout much of its range. While traditional fishing equipment methods remain limited, new sensitive and rapid detection methods should be developed to monitor fisheries resources. To monitor the presence and quantity of C. pallasii from environmental DNA (eDNA) extracted from seawater samples, a pair of primers and a TaqMan® probe specific to this fish based on mitochondrial cytochrome b (COB) sequences were designed for the real-time PCR (qPCR) assay. The combination of our molecular markers showed high specificity in the qPCR assay, which affirmed the success of presenting a positive signal only in the C. pallasii specimens. The markers also showed a high sensitivity for detecting C. pallasii genomic DNA in the range of 1 pg~100 ng rxn-1 and its DNA plasmid containing COB amplicon in the range of 1~100,000copies rxn-1, which produced linear standard calibration curves (r2=0.99). We performed a qPCR assay for environmental water samples obtained from 29 sampling stations in the southeastern coastal regions of South Korea using molecular markers. The assay successfully detected the C. pallasii eDNA from 14 stations (48.2%), with the highest mean concentration in Jinhae Bay with a value of 76.09±18.39 pg L-1 (246.20±58.58 copies L-1). Our preliminary application of molecular monitoring of C. pallasii will provide essential information for efficient ecological control and management of this valuable fisheries resource.

First Detection of Penicillium fellutanum from Stored Rice in Korea

  • Oh, Ji-Yeon;Sang, Mee-Kyung;Lee, Ho-Joung;Ryoo, Mun-Il;Kim, Ki-Deok
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.216-221
    • /
    • 2011
  • A representative isolate KU53 of the predominant Penicillium species was obtained from rice samples from rice processing complexes of National Agricultural Cooperative Federation in Korea. In this study, isolate KU53 was identified by its morphological and molecular characteristics. The macro- and microscopic characteristics of isolate KU53 were compared with the P. fellutanum reference isolate KCTC16913 on different media; isolate KU53 was generally identical to those of the reference isolate KCTC16913. In a molecular-based identification, the ${\beta}$-tubulin and translation elongation factor 1-alpha sequences of isolate KU53 was most closely related to those of P. fellutanum. Thus, isolate KU53 from stored rice could be identified as P. fellutanum, some isolates of which are known to produce mycotoxin-related metabolites. To our knowledge, this is the first detection of P. fellutanum from stored rice in Korea.

MALDI-TOF Analysis of Polyhexamethylene Guanidine (PHMG) Oligomers Used as a Commercial Antibacterial Humidifier Disinfectant

  • Hwang, Hyo Jin;Nam, Jungjoo;Yang, Sung Ik;Kwon, Jung-Hwan;Oh, Han Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1708-1714
    • /
    • 2013
  • Polyhexamethylene guanidine (PHMG) polymers used as an active ingredient in an antibacterial humidifier disinfectant were reported to cause harm to the human health when inhaled, although physical contact with this material was known to present low toxicity to humans. It is therefore necessary to develop an optimal analysis method which enables detection and analysis of PHMG polymers. MALDI-TOF investigations of PHMG are performed with a variety of matrices, and it is found that CHCA and 2,5-DHB are excellent matrices which well reflects the polymer population even at high mass. For the provided PHMG sample, the number-average ($M_n$) and weight-average ($M_w$) molecular masses were determined to be 744.8 and 810.7, respectively, when the CHCA was used as a matrix. The rank of the matrices in terms of averaged molecular weight was CHCA ~2,5-DHB > 5-NSA > DHAP, THAP > ATT > IAA ~ super-DHB ~ HABA. In addition, PSD of the PHMG oligomer ions exhibited a few unique fragmenation characteristics. The formation of a- and c-type fragments was the major fragmentation pathway, and the 25-Da loss peaks generally accompanied a- and c-type fragments.

Application of Recent DNA/RNA-based Techniques in Rumen Ecology

  • McSweeney, C.S.;Denman, S.E.;Wright, A.-D.G.;Yu, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.283-294
    • /
    • 2007
  • Conventional culture-based methods of enumerating rumen microorganisms (bacteria, archaea, protozoa, and fungi) are being rapidly replaced by nucleic acid-based techniques which can be used to characterise complex microbial communities without incubation. The foundation of these techniques is 16S/18S rDNA sequence analysis which has provided a phylogenetically based classification scheme for enumeration and identification of microbial community members. While these analyses are very informative for determining the composition of the microbial community and monitoring changes in population size, they can only infer function based on these observations. The next step in functional analysis of the ecosystem is to measure how specific and, or, predominant members of the ecosystem are operating and interacting with other groups. It is also apparent that techniques which optimise the analysis of complex microbial communities rather than the detection of single organisms will need to address the issues of high throughput analysis using many primers/probes in a single sample. Nearly all the molecular ecological techniques are dependant upon the efficient extraction of high quality DNA/RNA representing the diversity of ruminal microbial communities. Recent reviews and technical manuals written on the subject of molecular microbial ecology of animals provide a broad perspective of the variety of techniques available and their potential application in the field of animal science which is beyond the scope of this treatise. This paper will focus on nucleic acid based molecular methods which have recently been developed for studying major functional groups (cellulolytic bacteria, protozoa, fungi and methanogens) of microorganisms that are important in nutritional studies, as well as, novel methods for studying microbial diversity and function from a genomics perspective.

Use of Stable Isotope Probing in Selectively Isolating Target Microbial Community Genomes from Environmental Samples for Enhancing Resolution in Ecotoxicological Assessment

  • Park, Joonhong;Congeevaram, Shankar;Ki, Dong-Won;Tiedje, James M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2006
  • In this study we attempted to develop a novel genomic method to selectively isolate target functional microbial genomes from environmental samples. For this purpose, stable isotope probing (SIP) was applied in selectively isolating organic pollutant-assimilating populations. When soil microbes were fed with $^{13}C-labeled $ biphenyl, biphenyl-utilizing cells were incorporated with the heavy carbon isotope. The heavy DNA portion was successfully separated by CsCl equilibrium density gradient. And the diversity in the heavy DNA was sufficiently reduced, being suitable for the current DNA microarray techniques to detect biphenyl-utilizing populations in the soil. In addition, we proposed a new way to get more genetic information by combining this SIP method with selective metagenomic approach. The increased selective power of these new DNA isolation methods will be expected to provide a good quality of new genetic information, which, in turn, will result in development of a variety of biomarkers that may be used in assessing ecotoxicology issues including the impacts of organic hazards, and antibiotic-resistant pathogens on human and ecological systems.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Review and Future Development of New Culture Methods for Unculturable Soil Bacteria (난배양성 토양세균을 위한 신배양기술의 고찰과 향후 발전 방향)

  • Kim, Jai-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.179-187
    • /
    • 2011
  • This review describes the characteristics of various unculturable soil bacteria, successfully-cultivating examples of those bacteria, and the diverse factors to be considered for successful cultivation. Most importantly, the selection of proper media is very important because unculturable bacteria demand different types of nutrients at various concentrations of substrates, nitrogens and phosphorus. To develop a new medium to successfully culture unculturable bacteria from soil, molecular ecological studies should be combined together. The inoculum size on a plate is also important: less than 50 bacterial cells are recommended to be plated on a single culture plate. The environmental factors such as pH and salt concentration of the medium need to be adjusted as similar as possible to mimic the original soil environments, and the trial of the various temperatures and extended period of cultivation are better. Since one cannot simply tell about which one was unculturable among a great number of colonies grown on a newly developed medium, some suitable detection methods and fast identification methods are required. Many soil bacteria live with cooperation one another in their communities, so that enrichment such as coculture of using other bacterial metabolites and subsequent pure cultures can also guarantee successful cultivation of the previously uncultured bacteria in soil. Here, this review will discuss for the future perspectives to culture the unculturable soil bacteria.