• Title/Summary/Keyword: Molding system

Search Result 675, Processing Time 0.027 seconds

A study on the way to improve strength of LTV's FRP structures by optimizing laminated structure (전술차량 FRP 구조물 적층 구조 최적화를 통한 강도개선 방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.468-476
    • /
    • 2019
  • This paper presents the means of improving the strength of LTV's FRP structure for resolve and prevent quality problems. LTV secures enough kerb weight by applying FRP materials at hood and rear van assembly. However, because of FRP's inherent limitations, many initial quality problems such as crack at connections have occurred. Moreover, hood assy' is concerned about fall of endurance, because hood assy' have operated in abnormal condition. Therefore, this study executes lamination structure optimizations of FRP structure for improving bending strength. As a results, hood and rear van's bending strength at connections is improved 8.1 times and 1.5 times, respectively. Also hood assy's plate secures endurance life and improve 1.7 times of critical load about abnormal operating conditions through 1.4 times improvement of bending strength.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

A Study on the Design of Cooling Channels of Injection Mould to Manufacture a Flat Part with a Partly Thick Volume (부분적으로 후육부를 가지는 평판형 제품의 제작을 위한 사출성형 금형의 냉각채널 설계에 관한 연구)

  • Ahn, Dong-Gyu;Park, Min-Woo;Kim, Hyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.824-833
    • /
    • 2012
  • The shrinkage and the warpage of the moulded part are influenced by the design of the product and injection mould. In a flat part with a partly thick volume, the warpage of the flat part is created from the difference of the shrinkage between thin and thick regions. The warpage of the flat part with a partly thick volume can be reduced by a proper design of the cooling system in the injection mould. The goal of this paper is to design properly cooling channels of injection mould to manufacture a flat part with a partly thick volume. The conformal cooling channel is adopted to improve cooling characteristics of a region with the thick volume. The linear cooling channels are assigned to the other region. The proper design of the conformal cooling channels is obtained from three-dimensional injection molding analysis for various design alternatives. The moulding characteristics of the designed mould with both conformal and linear cooling channels are compared to those of the mould with linear cooling channels from viewpoints of temperature, shrinkage and warpage of the moulded part using numerical analysis. Injection mould with both conformal and linear cooling channels for the flat part with a partially thick volume is fabricated. In addition, injection moulding experiments are performed using the fabricated mould. From the results of the injection moulding experiments, it has been shown that the designed mould can successfully fabricate the flat part with a partially thick volume.

Die Shift Measurement of 300mm Large Diameter Wafer (300mm 대구경 웨이퍼의 다이 시프트 측정)

  • Lee, Jae-Hyang;Lee, Hye-Jin;Park, Sung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.708-714
    • /
    • 2016
  • In today's semiconductor industry, manufacturing technology is being developed for the purpose of processing large amounts of data and improving the speed of data processing. The packaging process in semiconductor manufacturing is utilized for the purpose of protecting the chips from the external environment and supplying electric power between the terminals. Nowadays, the WLP (Wafer-Level Packaging) process is mainly used in semiconductor manufacturing because of its high productivity. All of the silicon dies on the wafer are subjected to a high pressure and temperature during the molding process, so that die shift and warpage inevitably occur. This phenomenon deteriorates the positioning accuracy in the subsequent re-distribution layer (RDL) process. In this study, in order to minimize the die shift, a vision inspection system is developed to collect the die shift measurement data.

A NUMERICAL STUDY ON THERMAL DESIGN OF A LARGE-AREA HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY (나노임프린트 장비용 대면적 열판 열설계를 위한 수치 연구)

  • Park, G.J.;Lee, J.J.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • A numerical study is conducted on thermal performance of a large-area hot plate specially designed as a heating and cooling tool for thermal nanoimprint lithography process. The hot plate has a dimension of $240mm{\times}240mm{\times}20mm$, in which a series of cartridge heaters and cooling holes are installed. The material is stainless steel selected for enduring the high molding pressure. A numerical model based on the ANSYS Fluent is employed to predict the thermal behavior of the hot plate both in heating and cooling phases. The PID thermal control of the device is modeled by adding user defined functions. The results of numerical computation demonstrate that the use of cartridge heaters provides sufficient heat-up performance and the active liquid cooling in the cooling holes provides the required cool-down performance. However, a crucial technical issue is raised that the proposed design poses a large temperature non-uniformity in the steady heating phase and in the transient cooling phase. As a remedy, a new hot plate in which heat pipes are installed in the cooling holes is considered. The numerical results show that the installation of heat pipes could enhance the temperature uniformity both in the heating and cooling phases.

Effects of Beryllium on Human Serum Immunoglobulin and Lymphocyte Subpopulation

  • Kim, Ki-Woong;Kim, DaeSeong;Won, Yong Lim;Kang, Seong-Kyu
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.115-120
    • /
    • 2013
  • To investigate the effects of short-term exposure of beryllium on the human immune system, the proportion of T-lymphocytes such as CD3+, CD4+, CD8+, CD95, and NK cells, and the proportion of B cells and $TNF{\alpha}$ level in peripheral blood and immunoglobulins in the serum of 43 exposed workers and 34 healthy control subjects were studied. External exposure to beryllium was measured by atomic absorption spectrometer as recommended by the NIOSH analytical method 7300. T lymphocyte subpopulation analysis was carried out with flow cytometer. The working duration of exposed workers was less than 3 months and the mean ambient beryllium level was $3.4{\mu}g/m^3$, $112.3{\mu}g/m^3$, and $2.3{\mu}g/m^3$ in molding (furnace), deforming (grinding), and sorting processes, respectively (cited from Kim et al., 2008). However, ambient beryllium level after process change was non-detectable (< $0.1{\mu}g/m^3$). The number of T lymphocytes and the amount of immunoglobulins in the beryllium-exposed workers and control subjects were not significantly different, except for the total number of lymphocytes and CD95 (APO1/FAS). The total number of lymphocytes was higher in the beryllium-exposed individuals than in the healthy control subjects. Multiple logistic regression analysis showed lymphocytes to be affected by beryllium exposure (odd ratio = 7.293; p<0.001). These results show that short-term exposure to beryllium does not induce immune dysfunction but is probably associated with lymphocytes proliferation.

Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold (롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상)

  • Lee, Dong-Yoon;Hong, Sang-Hyun;Song, Ki-Hyeong;Kang, Eun-Goo;Lee, Seok-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • In the fields of display, optics, and energy, it is important to improve micropattern-machining technology for achieving small patterns, large surface areas, and low cost. Unlike flat molds, roll molds have the following advantages: they can be manufactured within a short time, larger surface areas can be obtained, and continuous molding can be achieved. In this study, we aim to investigate the causes for errors in the shapes for a micropattern-machining process, and we show that by compensating the dynamic balance of roll molds, the dimensional accuracy of machined parts can be improved. The experimental results show that dynamic-balance compensation for a roll mold reduced the mass unbalance and the vibrations of the roll mold, and as a result, the dimensional accuracy of machined micropatterns has been improved.

Partial Discharge Characteristics of Epoxy for Ignition Coil (점화코일용 에폭시의 부분방전 특성)

  • Shin Jong-Yeol;Hong Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.141-149
    • /
    • 2004
  • The automobile equipped with a gasoline engine uses the ignition coil, namely, a high voltage generator, to make the mixed fuel ignited and burned in the combustion chamber, which results in the power to drive the engine. The ignition coil functions to convert a low voltage of the primary into a hiか voltage of the secondary by switching method, which will be transmitted to the electrode. Here, if the ignition coil has a defect even a little, it cannot function well. In this study, it was chosen epoxy molding ignition coil in recently and epoxy resin which is insulation material as specimens, and it was measured the characteristics of the partial discharge occurring to the specimens when those were applied to a voltage, and thereby, it was researched and analyzed the distribution of phase angle, amount and count of discharge due to the changing voltage, And as the result is applying to the actual automobile ignition system, it can be expected the enhancement of the performance of the ignition coil and the reliability of the electrical equipment.

A Study on the Development of a Range Hood Front Cover using Change Core Method (Change Core 공법을 이용한 렌지후드 Front Cover 개발)

  • Park, Jong-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3363-3369
    • /
    • 2014
  • Recently, considerable effort has been made to maintain a pleasant and safe indoor environment in buildings. For this, the use of a ventilation system attached to a range hood in kitchens has prevailed. Accordingly, diversiform designs for range hoods have been used. Press molding is normally used for range hood construction for several reasons. On the other hand, its economic efficiency is low in the case of a small production work. Considerable research has been carried out to solve this problem and it is believed that it is useful to use the change core method to develop molds. This study designed the core of a mold using the change core method and a total of four processes were used in its manufacture. As a result, the press molds, which are needed for shorter production runs and whose form is changeable, were developed. In addition, after the measurements in three-dimensions, the specimen passed a test within a tolerance of ${\pm}2.00mm$.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.