• Title/Summary/Keyword: Molding System

Search Result 675, Processing Time 0.024 seconds

A Study on the Development of Intelligent Supplementary Feature Designer(ISFD) in Injection Molding (사출성형제품 부형상의 지적 설계에 관한 연구)

  • Gang, Seong-Nam;Heo, Yong-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.164-173
    • /
    • 2001
  • The configuration of injection molded part can be classified into primary feature and supplementary feature. Even though supplementary features such as ribs, snap fits and bosses make mold more complicated, which cause the increasement of the mold cost, supplementary features should be attached to primary features because of assembly, reinforcement, moldability and other functional purposes. But it is not easy for novice designers to design them appropriately because of the profound knowledge related to Injection molding. In this paper, the intelligent design tool called ISFD(Intelligent Supplementary Feature Designer) which supplies easy, simple, time and cost-effective design method has been studied and developed. A knowledge-based design system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

A Study on the Manufacturing of Large Size Hollow Shape Parts for Prototype-Car using Rapid Prototyping Technology and Vacuum Molding (쾌속조형 기술과 진공성형법을 이용한 시작차량용 대형 중공 부품의 제작에 관한 연구)

  • 박경수;양화준;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.362-365
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have revolutionized traditional manufacturing methods. These techniques allow the user to fabricate a part directly from a conceptual model before investing in production tooling and help develop new models with significant short time. This paper suggests to new process to manufacture large size hollow shape parts for prototype-car using Rapid Prototyping technology and Vacuum Molding with the reduction of delivery time. In addition, This paper introduces the dividing and combining method to make large size RP master model in spite of the limit of the build chamber dimensions of commercialized RP system and post-processing method to achieve sufficient surface quality.

  • PDF

The Viscosity Change of ABS Resin According to Inert Gas Amount (가스의 용해량에 따른 ABS 수지의 점도 변화)

  • 정태형;하영욱;정대진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • Conventional foaming process has defects such as lower mechanical properties than ur~foaming material due to non-uniform cell distribution and environmental pollution problem caused by chemical blowing agency. So, a new foaming process such as Microcelluar plastics has been introduced to use inactive gases as a foaming agency. In order to apply Microcellular plastics for mass production process system such as extrusion, injection molding and blow molding, it needs to predict the change in material properties of polymer according to the amount of meltingas. In Polymer molding applying Microcelluar plastics, the change of viscosity among several material properties is the most important factor. Therefore, this paper is aimed to establish the method which not only finds out but also predicts the change of viscosity of ABS(Acrylonitri1e Butadiene Styrene) resin according to inert gas amount in extrusion molding.

  • PDF

Optimization of injection molding to minimize sink index with Taguchi's Robust Design technique (다구찌의 강건설계 기법을 이용한 사출 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn Suk;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • In the manufacture and processing of large plastic materials, product quality is tested and verified through several techniques such as injection processing, residual stress through injection molding and shrinkage. With regards to the injection molding process, common problems such as inconsistent density is seen when different points of the product are discovered to have varying thickness levels. Sink marks in product are then evident. This occurs when there is poor molding conditions caused about by poor runner and packaging systems incorporated into the process. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique.

  • PDF

A study on the motorcycle lear cowl injection molding by CAE analysis (CAE 해석을 이용한 오토바이 리어카울 사출성형에 관한 연구)

  • Sung, Si-Myung;Jung, Sang-Jun
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • In this paper, in order to improve the formability and quality of the injection molded parts in the molds for molding the motorcycle rear cowl injection molded parts with different volumes at the same time, the flow of the molded parts is changed through the injection molding CAE analysis by changing the gate position, runner size and position. It is to find the optimum gate position, the diameter of the runner and the position where the balance is equal. The molded article formed by the optimization resulted in the uniformity of the molten resin at the same time at the corner of the product, thereby maintaining the flow balance favorable for mass production at lower injection pressure.

Development of Knowledge Sharing Platform for Molding & Forming Technology (금형·성형 기술을 위한 생산기반 지식공유형 플랫폼 개발)

  • Bae, S.M.;Lee, H.W.;Heo, Y.M.;Shin, G.H.;Lee, J.W.;Yoon, G.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.534-539
    • /
    • 2011
  • The production technology is the basic of manufacturing for various materials and components. This technology can influence the quality and productivity of leading export products such as automobile, ship, and electronic device. Besides, the production technology is very useful to apply to other manufacturing fields and has a great ripple effect. However, it is very difficult to make the production technology into standardization and knowledge-based database because the production technology is dependent in hands-on experience. In this study, the knowledge-sharing platform for the molding & forming technology which is a branch of the production technology is introduced. This platform is web-based system and has the knowledge authoring tool technologies storage, semantic database, and web portal service. Therefore, the molding & forming technology can be shared and spread easily by the knowledge-sharing platform.

Development of Micro mold with Electroplating Ni for Injection molding (사출 성형을 위한 니켈 도금을 수행한 마이크로 몰드의 개발)

  • Hwang, Kyo-Il;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.138-145
    • /
    • 2006
  • An injection molding is necessary to mass-product for micro-nano system, so micro-nano mold must be developed for injection molding. The micro-nano mold has precision and strength to overcome a surround of injection. So in this paper, two methods were used. First, after etching the Al, Ni was electroplated in etched AI. The other, LIGA method was used. A temperature and thickness of Ni are important factors in these methods. So after fabrication, the simulation was processed to find optimal thickenss of Ni and temperature.

The Effects of Orthogonal Ribs on Structural Warpage During Plastic Injection Process (사출성형과정에서 직교리브가 구조물의 휨에 미치는 영향)

  • Lee, Sung-Hee;Hwang, Chul-Jin;Kang, Jung-Jin;Heo, Young-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.983-988
    • /
    • 2004
  • In the present study, the effects of orthogonal ribs on structural warpage during injection molding process were investigated. Basic ribbed models for the evaluation of degree of warpage were introduced and designed. Injection molds for these models are manufactured based on the full 3D CAD/CAM technology and specimens are prepared for experiment. Numerical analysis using commercial plastic injection molding analysis software was also performed to compare the results with experimental ones. The variations of materials and parameters such as injection time, mold temperature, melt temperature, holding time were considered in the present work. It was shown that orthogonal ribs have significant effect on the reduction of warpage during the injection molding process.

  • PDF

Development of Cermet Cutting Tool by Powder Injection Molding

  • Chung, Seong-Taek;Kwon, Young-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.493-494
    • /
    • 2006
  • Chip breaker of cutting tool is an important feature to enhance cutting performance. Powder injection molding process was used to produce a triangular-shape cermet grooving insert which has three chip breakers. Attrition milled cermet powders were mixed with wax-based binder system in continuous twin screw extruder. Three-plate injection mold with slide cores was used to produce injection-molded parts. After molding, solvent and thermal debinding was carried out. Sintering was conducted in a batch furnace with a graphite heater. The sintered parts satisfy the requirements of dimensional tolerances and material properties.

  • PDF

Compression Molding of Diffractive-Aspheric Lenses Using Chalcogenide Glasses (칼코겐유리를 활용한 회절비구면렌즈 압축성형)

  • Kim, Ji-Kwan;Choi, Young-Soo;Ahn, Jun-Hyung;Son, Byeong-Rea;Hwang, Young-Kug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.43-48
    • /
    • 2020
  • This study explores the compression molding of diffractive-aspheric lenses using GeSbSe chalcogenide glasses. A mold core with diffractive structure was prepared and a chalcogenide glass lens was molded at various temperatures using the corresponding core. The effect of molding temperature on the transcription characteristics of diffractive structure was examined, by measuring and comparing the diffractive structure between the mold core and the molded chalcogenide glass lens using a microscope and a white light interferometer. In addition, the applicability of the molded lens for thermal imaging was evaluated, by measuring the form error.