• Title/Summary/Keyword: Mold manufacturing

Search Result 972, Processing Time 0.028 seconds

The Development of Decelerating Motor of Electronic Power Steering (EPS 감속 모터 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study is making a product for the development of one process worm wheel of making a shape for gear for worm wheel without hobbing manufacturing process. Because of removing a hobbing process, plastic worm wheel for increased productivity and equivalent quality is produced in the result. As the result, this product is selling to Hyundai Mobis, Mando, TRW, KOYO/NSK/Showa(Japan), Delphai(America). The core technology and different strategy are as follows. The technology protection for molding of worm whee is currently patent process "Molding process of helical gear(No. 10-2008-0105908). Further patent procedure for "molding system for positioning decision of inserting boss is currently prepared. As gear molding procedure in hobbing machine without gear machining procedure, most of all, core development technology which is making a gear tooth is main topic. So that, in case of currently developed worm wheel, because core and mold base are not developed in the first procedure, gear is machining in hobbing M/C as the second procedure. In the later, patent for mold base structure will be prepared in this study results.

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis (대퇴부 거동 해석 및 복합재료 보철물 설계)

  • 임종완;하성규
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2002
  • The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.

Conformal Design of PDMS Mold for Arbitrary Skin Surface with 3D Printing (3D Printing 공정을 이용한 PDMS Mold 제작)

  • Kim, KwangYoon;Park, SukHee;Lee, HanBit;Lee, NakGyu;Yoon, JongHun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.553-560
    • /
    • 2017
  • 3D printing technology has been a great interest in human bio-interfaces and human-like robotics since they require arbitrary and adaptive manufacturing. This research mainly concerns the 3D fabrication of a packed biosensor using elastomeric sheets made of PDMS. It is essential to design the PDMS molding with 3D printing since, in the case of biosensors, it should not only produce a conformal shape depending on an arbitrary skin surface but also guarantee a uniform thickness distribution during solidification in the PDMS prepolymer solution. To satisfy the characteristics of the PDMS molding, such as flexibility in the de-molding and stiffness in the solidification processes, multi-materials have been selectively applied to the PDMS molding design, which has been validated with finite element analyses and compared with the 3D printed molding.

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Analysis of RTM Process to Manufacture Composite Bogie Frame Considering Fiber Orientation (섬유방향성을 고려한 복합소재 대차 프레임의 RTM 성형 특성 해석)

  • Kim, Moo Sun;Kim, Jung-Seok;Kim, Seung Mo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.301-308
    • /
    • 2015
  • To reduce the weight of a railroad vehicle, a bogie frame skin is considered for manufacture using an RTM process and composite material. Compared to other processes, RTM has merits in that it demands only simple manufacturing facilities and can produce a large and complex structure in a short cycle time. On the other hand, it is important to determine the proper number and locations of gates and vents to prevent void formation inside a structure. In this study, we numerically predicted the flow pattern in a bogie frame skin during the RTM process by distinguishing the permeability of a fiber mat as isotropic or anisotropic. Using the results, we analyzed the RTM process conditions of the bogie frame to predict skin void formation, mold filling time, and optimum location of vents depending on the permeability conditions.

Utilization of 3D CAD and 3D Printer and UV Curavle resin Casting Defect (3D CAD, 3D 프린터 활용과 광경화수지 주물 결함)

  • Ryu, Ki-Hyu;Seo, Jin-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2017
  • Casting process includes wax pattern, investment, dewaxing, curing, casting, etc., and each single process is important to achieve a good result. Since 2000, 3D printers have been developed and widely used; as more prefer UV Curavle resin method over wax method, resultant casting defects have become worse. To resolve such problem, preceding research revealed casting defects of existing wax method. In particular, defects of UV Curavle resin method showed difference in investment, dewaxing, deresinating and curing compared to the existing one. Accordingly, results were presented through casting tests; especially, a temperature rising curve only for UV Curavle resin was shown rather than one for the existing method. Lastly, this research classified those not available with direct casting and suggested mold manufacturing. This research is expected to be useful for 3D printer users or those who would conduct direct casting with UV Curavle resin.

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.

Micro cutting process technology for micro molds parts (마이크로 금형 부품을 위한 마이크로 절삭가공 기술)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Kim, Gun-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.

State recognition of fine blanking stamping dies through vibration signal machine learning (진동신호 기계학습을 통한 프레스 금형 상태 인지)

  • Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.

A study on structure of feed sprue considering turbulence and mold temperature in the investment casting process (Investment casting 공정에서 수축률을 고려한 소형탕도의 이상적인 구조와 주형 온도에 관한 연구)

  • Lee, Jong-Rae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Investment casting is a production method commonly used to manufacture precision equipment, medical fields, and accessories, and has continued to develop through the modernization of equipment and high quality of materials, and its scope of use has been expanded. The purpose of this study is to minimize the defect rate by deriving structural improvement and standardization of mold temperature, which are key elements of the investment casting process, to minimize the defect rate. The scope of the study is limited to jewelry manufacturing casting processes suitable for understanding the structure and principles of small gate, and an experimental research is to be conducted by using soft Wax, gypsum powder, and 14 K gold as research materials. According to the results, the most appropriate casting standard temperature for the casting pattern of Alloy 14 k was the lowest turbulence at 980℃ flask temperature of 550℃, so good products could be produced. As a future task of this study, detailed studies are needed to data the structure and system temperature of small gate, reduce production defects in the field, and provide data for excellent investment casting competitiveness.