• Title/Summary/Keyword: Mold Surface Temperature

Search Result 285, Processing Time 0.033 seconds

Numerical and Experimental Investigation of the Heating Process of Glass Thermal Slumping

  • Zhao, Dachun;Liu, Peng;He, Lingping;Chen, Bo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.314-320
    • /
    • 2016
  • The glass thermal forming process provides a high volume, low cost approach to producing aspherical reflectors for x-ray optics. Thin glass sheets are shaped into mirror segments by replicating the mold shape at high temperature. Heating parameters in the glass thermal slumping process are crucial to improve surface quality of the formed glass. In this research, the heating process of a thermal slumping glass sheet on a concave parabolic mold was simulated with the finite-element method (FEM) to investigate the effects of heating rate and soaking temperature. Based on the optimized heating conditions, glass samples 0.5 mm thick were formed in a furnace with a steel concave parabolic mold. The figure errors of the formed glass were measured and discussed in detail. It was found that the formed glass was not fully slumped at the edges, and should be trimmed to achieve better surface deviation. The root-mean-square (RMS) deviation and peak-valley (PV) deviation between formed glass and mold along the axial direction were 2.3 μm and 4.7 μm respectively.

Phenomena of Hyperbolic Heat Conduction in the Hot Mold with an Inner Defect (내부결함이 있는 고온 금형에서의 쌍곡선형 열전도 현상)

  • Lee, Gwan-Su;Im, Gwang-Ok;Jo, Hyeong-Cheol;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.952-957
    • /
    • 2001
  • In the glass forming process, the phenomena of hyperbolic heat conduction in the hot mold with an inner defect are studied analytically. It is shown that the temperature predicted by the parabolic model is underestimated compared to the one by the hyperbolic model. As the rmal wave is reflected from the area with defects and then arrives at the surface supplied by the heat flux, it is expected that there exists thermal shock in the materials. The area with defects is assumed to be adiabatic since its thermal conductivity is much lower compared to the one of the material. The results also indicate that the sudden temperature -jump in the mold surface can cause diverse problems such as glass defect (embryo mark, etc), oxidation of mold and coating, and change of material properties.

Basic study on selecting mold transfer paper for gloss exposed mass concrete (광택 노출콘크리트용 거푸집 전사지 선정에 관한 기초적 연구)

  • Lee, Jea-Hyeon;Kim, Min-Sang;Baek, Cheol;Kyung, Yeong-Hyeok;Han, In-Deok;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.15-16
    • /
    • 2016
  • Ways to efficiently manufacture gloss exposed mass concrete at an inexpensive price, in other words, ways to paste transparent transfer paper onto the surface of a combined mold has been designated as New Technology Article 191 by the Ministry of Land, Infrastructure and Transport. But if the difference in the coefficient of linear expansion between the mold's and transfer paper's material causes temperature to rise or fall, a wrinkly surface can appear. Therefore this study, by experimentally comparing the deformation characteristics between the mold material and transfer paper material upon changes in temperature, seeks to serve as a basic reference point for selecting the optimal transfer paper for different mold types. Study results revealed that for molds, polyester resin transfer paper is optimal, and for aluminum molds, acrylic resin transfer paper is.

  • PDF

Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

  • Kim, Jiyeon;Kweon, Si-Gyun;Park, Junhyung;Lee, Harim;Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were $26.98^{\circ}C$ and $28.44^{\circ}C$, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.

Development and transcription estimation of an automotive interior plastic part(HD Switch Panel) with no glossy etching pattern (무광부식 패턴을 갖는 자동차 내장부품인 HD Switch Panel의 제조 및 전사성 평가)

  • Kim, Young-Kyun;Kim, Dong-Hak;Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3280-3286
    • /
    • 2009
  • In this paper, we designed and manufactured HD Switch Panel parts with micro-etched pattern. By using CAE analysis, we could predict weld-line positions and the amount of shrinkage during injection molding process. We measured the temperature distribution of the mold surface so that we could optimize the processing conditions such as mold temperature. In order to increase the transcription of micro-etched pattern, we applied the E-Mold technology and evaluated the effect of mold temperature on the surface quality. We concluded that the etched pattern was improved(more than 2.5$\to$1.5~1.7) through the measurement of surface gloss and the observation of both SEM and SPM images.

Surface Ageing Property of Polymer Insulator for Transmission line with Forest Fire Test (H종 주상용 몰드 변압기의 덕크구조에 따른 열해석 특성)

  • Cho, Han-Goo;Kim, Kyang-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.111-111
    • /
    • 2010
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. In this paper, the temperature distribution and thermal stress analysis of H class 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

Improvement of Weldlines of an Injection Product in Using Movement of a High Temperature Gas (고온기체 유동을 이용한 사출성형품의 웰드라인 개선)

  • Jung, Jae-Sung;Lee, Young-Joo;Min, Kyung-Bae;Song, Bo-Keun;Kim, Hee-Sung;Kim, Sun-Kyung
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • Today, looking at the trend of product development, interests of injection technology to reduce weldline are growing because of increases of polymer composite materials that containing functional elements and demand of no-painted injection in accordance with environmental regulations. In this paper, surface temperatures of mold increased using high temperature gas for elimination of weldline and characteristics of weldline are analyzed according to mold temperature($60^{\circ}C{\sim}120^{\circ}C$).

  • PDF

Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser (고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jung-Do;Kim, Young-Kuk;Kim, Byeong-Hun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

An Experimental Study of the Effect of Process Conditions on Direct Surface Forming of a Light-Guide (성형조건에 따른 부분 압축가열방식의 도광판 성형에 관한 실험적 연구)

  • 조광환;윤경환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • A light-guide is one of several important components of backlight unit in TFT-LCD. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. DSF is very similar to the well-known hot embossing except for partial contact between mold and substrate. The final V-groove pattern shows different shapes depend on the temperature of mold surface, contact time of mold and depth of V-groove.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.