• Title/Summary/Keyword: Mold Deformation

Search Result 251, Processing Time 0.025 seconds

Micro End-milling Technology for Micro Pole Structures (미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술)

  • Je, Tae-Jin;Choi, Doo-Sun;Lee, Eung-Sug;Hong, Sung-Min;Lee, Jong-Chan;Choi, Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses (비구면 유리렌즈 열변형 보정에 관한 연구)

  • Lee, Dong-Kil;Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Hak-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

A Study on Hardening Characteristics of Carbon Steel by Using Finite Element Method (유한요소법을 이용한 탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2011
  • Recently, from general machine parts and automobile parts using carbon steel to a mold, there has been efforts for improving durability and attrition resistance of these parts. Especially, heat treatment with laser which works fast and automatically can be used for the mass production with high quality. Moreover, local heat treatment can be used to handle with complex and precise parts. Accordingly, we analyzed hardening characteristics of carbon steel using the finite element method and compare the experimental results to have more reliability. We also proved the cause of thermal deformation with temperature and stress distribution by heat treatment. After these analysis and experimental, we found that each maximum hardness of the two tests was 728 Hv and 700 Hv, on condition of $1050^{\circ}C$ heating temperature, and 2 mm/sec laser speed. We also found that difference of surface stress-distribution was occurred, and this makes deformation mode up after heat treatment.

Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device (광픽업용 비구면 렌즈 사출성형 공정의 수치해석)

  • 박근;한철엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

A Convergent Investigation on the Thermal Analysis due to Heat Generation of Laptop (노트북 열발생에 따른 열해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.189-194
    • /
    • 2020
  • In this study, the durability on heat was considered through the thermal stress analyses on models A, B, and C of laptops. Model A is an integral part, indicating that the heated keyboard showed the highest temperature and the monitor part far from the heated one showed the coldest. In models B and C, only the heated keyboard parts are modeled, so it can be seen that they get hot overall. In the case of model A, the thickness of the laptop keyboard was thicker, but there were the most deformations, while model C had the thinnest thickness with the smallest stress and deformation. Model B had the highest stress but relatively little deformation. It is considered that the result of thermal analysis in this study can be used to make the latest efficient design of durable laptop. The durability of laptop against the heat can be evaluated by applying this study result to the laptop. And it is seen that the result can be the design of laptop with strength and the aesthetic convergence.

A Study on the Creep Deformation Behavior of Mg-Zn-Mn-(Ca) Alloys (Mg-Zn-Mn-(Ca)합금의 크리이프 변형거동에 관한 연구)

  • Kang, Dae-Min;Koo, Yang;Sim, Sung-Bo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.73-78
    • /
    • 2006
  • In this paper, creep tests of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys, which were casted by mold with Mg-3%Zn-1%Mn and Mg-3%Zn-1%Mn-0.2%Ca, were done under the temperature range of 473-573K and the stress range of 23.42-78.00Mpa. The activation energies and the stress exponents were measured to investigate the creep plastic deformation of those alloys, and the rupture lifes of Mg-Zn-Mn alloy were also measured to investigate the fracture behavior. From the results, the activation energy of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 473-493K were measured as 149.87, 145.98KJ/mol, respectively, and the stress exponent were measured as 5.13, 6.06 respectively. Also the activation energies Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 553-573K were obtained as 134.41, 129.22KJ/mol, respectively, and tress exponent were obtained as 3.48, 4.63, respectively. Finally stress dependence of rupture life and the activation energy of rupture life of Mg-Zn-Mn under the temperature range of 473-493K was measured as 8.05, 170.0(KJ/mol), respectively, which were a little higher than the results of steady state creep.

Study on Structural Strength Analysis of Automotive Seat Frame (자동차 시트 프레임의 구조 강도 해석에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Soo;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Seat is the part relevant to comfortableness and safety among automotive parts directly. It also should have sufficient stiffness and strength to satisfy these conditions and ensure the safety of passenger. Automotive seat is modelled with 3D and is simulated with structural analyses about three kinds of experiments by before and after gap, side gap, before and after moment strength. As analysis result, deformation angles of $0.038^{\circ}$ and $0.04^{\circ}$ are respectively shown at before and after gap test, side gap test. Through before and after the moment strength test, maximum total deformations of 0.18946mm and 3.2482mm are respectively shown at front and rear loads. By the study result of no excessive deformation and no fracture at automotive seat frame, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A study on structural analysis of GRINDING DISC ASS'Y for secondary battery material decompositiom (이차전지 원료 해쇄용 GRINDING DISC ASS'Y 구조해석에 대한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • Globally, as population growth and economic development continue, resource consumption is increasing rapidly. As an alternative to electric vehicles was suggested as the environmental pollution problem emerged, the number of registered electric vehicles in Korea increased by more than 137 times compared to 2013. Secondary batteries are expected to expand into various markets such as small IT devices and electric vehicles, and the most important part of electric vehicles is the battery (secondary battery). Therefore, in this study, to analyze the stability of the CSM (Classifier Separator Mill) grinding disc that crushes secondary battery raw materials, structural analysis and vibration analysis of the 1st to 4th grinding discs and the final model were performed. The change of bending by the weight of the Grinding Disc is at least 0.065㎛ and maximum 0.075㎛, and the change by the standard gravity is judged to be very low. The strain is at least 0.00031㎛/㎛ and maximum 0.00078㎛/㎛, and even if the number of Hamer increases, the change by the weight is judged to be insignificant. When the Grinding Disc rotates at a maximum of 6000rpm, the deformation and deformation rate of the first to third models are similar, but the fourth model (Hamer 10EA) is more than three times and the final model (Hamer 12EA) is about four times. However, the maximum deformation is 28.21㎛, which is considered to be insignificant when the change is 6000rpm. Six modes of natural Frequency analysis of the 1st~4th order and final model of the grinding disc appeared to be bent or twisted.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.