• Title/Summary/Keyword: Mohr-Coulomb 파괴조건

Search Result 38, Processing Time 0.024 seconds

Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress (비선형 암석 파괴조건식의 접선 마찰각과 점착력의 중간주응력 의존성)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Although Mohr-Coulomb failure criterion has limitations in that it is a linear criterion and the effect of the intermediate principal stress on failure is ignored, this criterion has been widely accepted in rock mechanics design. In order to overcome these shortcomings, the Hoek-Brown failure criterion was introduced and recently a number of 3-D failure criteria incorporating the effect of the intermediate principal stress on failure have been proposed. However, in many rock mechanics designs, the possible failure of rock mass is still evaluated based on Mohr-Coulomb criterion and most of practitioners are accustomed to understanding the strength of rock mass in terms of the internal friction angle and cohesion. Therefore, if the equivalent Mohr-Coulomb strength parameters of the advanced failure criteria are calculated, it is possible to take advantage of the advanced failure criteria in the framework of the Mohr-Coulomb criterion. In this study, a method expressing the tangential Mohr-Coulomb strength parameters in terms of the stress invariant is proposed and it is applied to the generalized Hoek-Brown criterion and the HB-WW criterion. In addition, a new approach describing the geometric meaning of the ${\sigma}_2$-dependency of failure criteria in 3-D principal stress space is proposed. Implementation examples of the proposed method show that the influence of the intermediate principal stress on the tangential friction angle and cohesion of the HB-WW criterion is considerable, which is not the case for the 2-D failure criterion.

Study on a 3-Dimensional Rock Failure Criterion Approximating to Mohr-Coulomb Surface (Mohr-Coulomb 파괴곡면에 근사하는 암석의 3차원 파괴조건식 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.93-102
    • /
    • 2011
  • In spite of being unable to take into the effect of intermediate principal stress, Mohr-Coulomb and Hoek-Brown criteria are very popular as rock failure criteria. The recent researches reveal that the influence of intermediate principal stress on the failure strength of rock is substantial, so that 3-D failure criteria in which the intermediate principal stress could be considered is necessary for the safe design of the important rock structures. In this study, the likely application of the 3-D failure criterion proposed by Jiang & Pietruszczak (1988) to the prediction of the true triaxial strength of rock materials is discussed. The failure condition is linear in the meridian plane of principal stress space and it is represented by the smooth surface contacting the corners of the Mohr-Coulomb surface. The performance of the Jiang & Pietruszczak's criterion is demonstrated by simulating the actual true triaxial tests on the rock samples of three different rock types.

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

Comparison between Direct and Indirect Implementation of Generalized Hoek and Brown Failure Criterion in Numerical Analysis Procedure (범용 Boek-Brown 파괴기준식의 직접 및 간접적 적용에 관한 수치해석과정의 비교 분석)

  • Deb Debasis;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.228-235
    • /
    • 2005
  • Friction angle and cohesion of rock masses can be estimated from Hoek and Brown failure criterion and then plastic corrections can be applied using Mohr-Coulomb yield function. This study finds that this estimation procedure would not be appropriate for weak rock masses and for cases where low confining stress is expected to develop. A procedure is outlined in this paper for estimating plastic corrections directly from Hoek and Brown material model. Comparative study shows that direct procedure would simulate non-linear failure surface better than indirect procedure especially in the low confining stress regime.

Comparative Study on the Rock Failure Criteria Taking Account of the Intermediate Principal Stress (중간주응력을 고려한 선형 및 비선형 암석파괴조건식의 비교 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • Although the Mohr-Coulomb and Hoek-Brown failure criteria have been adopted widely in rock mechanics, they neglect the ${\sigma}_2$ effect. The result of true triaxial tests on rock samples, however, reveals that the ${\sigma}_2$ effect on strength of rocks is considerable, so that rock failure criteria taking into account the influence of ${\sigma}_2$ are necessary for the precise stability evaluation of rock structures. In this study, a new nonlinear 3-D failure criterion has been suggested by combining the Hoek-Brown criterion with the smooth octahedral shape function taken from Jiang & Pietruszczak (1988). The performance of the new criterion was assessed by comparing the strength predictions from both the suggested criterion and the corresponding linear 3-D criterion. The resulting fit of the new criterion to the true triaxial test data for six rock types taken from the literature shows that the criterion fits the experimental data very well. Furthermore, for the data sets having data taken in the low ${\sigma}_3$ range, the nonlinear failure criterion works better than the linear criterion.

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.

An Investigation on the Characteristics of Local Factors of Safety of Rock Failure and Their Dependency on the Stress Paths (암석파괴 국부안전율의 특성과 응력경로 의존성 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • The factor of safety (FOS) is commonly used as an index to quantitatively state the degree of safety of various rock structures. Therefore it is important to understand the definition and characteristics of the adopted FOS because the calculated FOS may be different according to the definition of FOS even if it is estimated under the same stress condition. In this study, four local factors of safety based on maximum shear stress, maximum shear strength, stress invariants, and maximum principal stress were defined using the Mohr-Coulomb and Hoek-Brown failure criteria. Then, the variation characteristics of each FOS along five stress paths were investigated. It is shown that the local FOS based on the shear strength, which is widely used in the stability analysis of rock structures, results in a higher FOS value than those based on the maximum principal stress and the stress invariants. This result implies that the local FOS based on the maximum shear stress or the stress invariants is more necessary than the local FOS based on the shear strength when the conservative rock mechanics design is required. In addition, it is shown that the maximum principal stresses at failure may reveal a large difference depending on the stress path.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

Suggestion of Charts and Equations Estimating the Strength Parameters of Rock Mass Using the Rock Mass Classification Value (RMC 값을 이용한 암반의 강도정수 값 추정도표 및 추정식의 제안)

  • Kim, Min-Kwon;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.73-85
    • /
    • 2014
  • The strength parameters used in rock mass design are mainly estimated by equations using Hoek-Brown failure criterion because the tests to obtain the values are limited and expensive. To estimate the strength parameters, the Hoek-Brown failure criterion should be transformed to the Mohr-Coulomb failure criterion. But the processes are more or less cumbersome due to the several stages including the computation and the analyzing steps. In this study, several rock states of various conditions were modeled and then the strength parameters were estimated using the Hoek-Brown failure criterion. Thereafter by analyzing the results, some charts and equations estimating the strength parameters through only one step or easily in the field using the values of RMC, the uniaxial compressive strength and the rock constant ($m_i$), were suggested. And then the suggested method was compared and discussed with the existing method.