Browse > Article
http://dx.doi.org/10.7474/TUS.2012.22.1.012

Comparative Study on the Rock Failure Criteria Taking Account of the Intermediate Principal Stress  

Lee, Youn-Kyou (군산대학교 해양건설공학과)
Publication Information
Tunnel and Underground Space / v.22, no.1, 2012 , pp. 12-21 More about this Journal
Abstract
Although the Mohr-Coulomb and Hoek-Brown failure criteria have been adopted widely in rock mechanics, they neglect the ${\sigma}_2$ effect. The result of true triaxial tests on rock samples, however, reveals that the ${\sigma}_2$ effect on strength of rocks is considerable, so that rock failure criteria taking into account the influence of ${\sigma}_2$ are necessary for the precise stability evaluation of rock structures. In this study, a new nonlinear 3-D failure criterion has been suggested by combining the Hoek-Brown criterion with the smooth octahedral shape function taken from Jiang & Pietruszczak (1988). The performance of the new criterion was assessed by comparing the strength predictions from both the suggested criterion and the corresponding linear 3-D criterion. The resulting fit of the new criterion to the true triaxial test data for six rock types taken from the literature shows that the criterion fits the experimental data very well. Furthermore, for the data sets having data taken in the low ${\sigma}_3$ range, the nonlinear failure criterion works better than the linear criterion.
Keywords
Intermediate principal stress; Rock failure criterion; Hoek-Brown; Mohr-Coulomb; True triaxial test;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yu, M.-H., Zan, Y.-W., Zhao, J. and Yoshimine, M., 2002, A unified strength criterion for rock material, Int J. Rock Mech. Min. Sci., Vol. 39, pp. 975-989.   DOI
2 Zhou, S., 1994, A program to model the initial shape and extent of borehole breakout. Comput. Geosci., Vol. 20, pp. 1143-1160.   DOI
3 Issen, K. A. and Challa, V., 2008, Influence of the intermediate principal stress on the strain localization mode in porous sandstone, J. Geophys. Res., Vol. 113, B02103, doi:10.1029/2005JB004008.   DOI
4 Matsuoka, H. and Nakai, T., 1982, A new failure criterion for soils in three-dimensional stresses, IUTAM Conf. on Deform. and Failure of Granular Mater., Delft, pp. 253-263.
5 Mogi K., 1967, Effect of the intermediate principal stress on rock failure, J. Geophys. Res., Vol. 72, pp. 5117-5131.   DOI
6 Mogi, K., 1971, Fracture and flow of rocks under high triaxial compression. J. Geophys. Res., Vol. 76, pp. 1255-1269.   DOI
7 Mogi, K., 2007, Experimental rock mechanics, Taylor & Francis.
8 Nayak, G. C. and Zienkiewicz, O. C., 1972, Convenient forms of stress invariants for plasticity. J. Struct. Div. ASCE, Vol. 98, pp. 949-953.
9 Jiang, J. and Pietruszczak, S., 1988, Convexity of yield loci for pressure sensitive materials, Comput. Geotech., 5, 51-63   DOI
10 Takahashi, M. and Koide, H., 1989, Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000m, Rock at great depth (V. Maury & D. Fourmaintraux Ed.), Vol. 1, 19-26.
11 Tiwari, R. P. and Rao, K. S., 2006, Post failure behaviour of a rock mass under the influence of triaxial and true triaxial confinement, Engineering Geology, Vol. 84, pp. 112-129.   DOI
12 Willam, K. J. and Warnke, E. P., 1974, Constitutive model for triaxial behavior of concrete, Colloquium on Concrete Structures Subjected to Triaxial Stresses, ISMES Bergamo, IABSE Report, 19.
13 Yang, X.-L., Zou, J.-F. and Sui, Z.-R., 2007, Effect of Intermediate Principal Stress on Rock Cavity Stability, J. Cent. South Univ. Technol., Vol. 14(s1), pp. 165-169.   DOI
14 이연규, 송원경, 박철환, 최병희, 2011, 3차원 파괴조건식을 이용한 콘크리트 플러그의 안전도 평가, 터널과 지하공간(한국암반공학회지), Vol. 21, pp. 526-535.   과학기술학회마을
15 Al-Ajmi, A. M. and Zimmerman, R. W., 2005, Relation between the Mogi and the Coulomb failure criteria, Int J. Rock Mech. Min. Sci., Vol. 42, pp. 431-439.   DOI
16 Benz, T., Schwab, R., Kauther, R. A. and Vermeer, P. A., 2008, A Hoek-Brown criterion with intrinsic material strength factorization, Int. J. Rock Mech. Min. Sci., Vol. 45, pp. 210-222.   DOI
17 Chang, C. and Haimson, B. C., 2000a, A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of Westerly granite, Int. J. Rock Mech. Min. Sci., Vol. 37, pp. 285-296.   DOI
18 Chang, C. and Haimson, B. C., 2000b, True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite, J. Geophys. Res., Vol. 105, pp. 18999-19013.   DOI
19 Colmenares, L. B. and Zoback, M. D., 2002, A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks, Int J. Rock Mech. Min. Sci., Vol. 39, pp. 695-729.   DOI
20 Davis JC. Statistics and data analysis in geology. 3rd Ed. John Wiley & Sons; 2002.
21 Drucker, D. and Prager, W., 1952, Soil mechanics and plastic analysis or limit design. Q. Appl. Math., Vol. 10, pp. 157-165.   DOI
22 Ewy, R., 1999, Wellbore-stability predictions by use of a modified Lade criterion. SPE Drill Completion, Vol. 14(2), pp. 85-91.   DOI
23 Hoek., E. and Brown E. T., 1980, Underground excavations in rock, The Institution of Mining and Metallurgy, London.
24 Hoskins, E. R., 1969, The failure of thick-walled hollow cylinders of isotropic rock, Int. J. Rock Mech. Min. Sci., Vol. 6, pp. 99-125.   DOI
25 이연규, 2011, Mohr-Coulomb 파괴곡면에 근사하는 암석의 3차원 파괴조건식 고찰, 터널과 지하공간(한국암반공학회지), Vol. 21, pp. 93-102.   과학기술학회마을