• Title/Summary/Keyword: Mohr method

Search Result 121, Processing Time 0.028 seconds

Stochastic Finite Element Analysis of Underground Structure considering Elasto-Plastic Behavior (탄소성을 고려한 지하구조체의 확률유한요소해석)

  • 김상효;나경웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.157-164
    • /
    • 1998
  • An elasto-plastic stochastic finite element method is developed to evaluate the probability of failure of the underground structure. The Mohr-Coulomb failure criteria is adopted for yield condition. The material properties such as the elastic modulus and the cohesion are assumed to be statistically independent random variables which are modeled as spatial stochastic fields. The displacements around the excavated area and the probability of the failure are examined by varying the coefficient of variance for each variables. It is found that the developed procedure can provide the proper probabilistic information about the failure of the underground structure

  • PDF

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

Comparative Study on the Stability Analysis Methods for Underground Pumped Powerhouse Caverns in Korea (국내 양수발전소 지하공동 안정성 해석방법의 비교)

  • 임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.248-258
    • /
    • 2002
  • The sixth underground pumped powerhouse cavern is now under construction in Korea. For the stability analysis for the caverns of the five underground powerhouses, finite element method was used. For the analysis, in-situ rock stress were measured by overcoring method. The stress measurement showed that initial horizontal to vertical stress ratio was 1.07-1.32 in low powerhouse sites. Rock mass strength and elasticity were assumed from rock core properties through engineering processes. So the ratio of input elasticity fur the analysis were about 0.16-0.55 to rock core elasticity. In most of the analysis, elasto-plastic condition with Mohr-Coulomb failure criteria were applied. But in one case, viscoelastic condition was applied, too. The input cohesion and internal friction angle were approximately 0.12-0.22, 0.6-0.87 to rock core strength parameters, respectively.

A Geotechnical Parameter Estimation of Underground Structures in Elasto -plastic Condition (지하공간 건설시 탄.소성 모델에 의한 지반계수 추정)

  • Lee, In-Mo;Kim, Dong-Hyeon;Lee, U-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.85-94
    • /
    • 1997
  • The design and construction of underground structures contain many substantial mincer dainties. A reasonable estimation of geotechnical parameters is of paramount importance and must be one of the most difficult tasks in designing and constructing underground structures. If the plastic zone exists by tunnel excavation, the ground response may also be dependent on the yield criterion mainly composed of strength parameters. In order to estimate unknown model parameters from the in-situ measurements as well as prior estimates for designing tunnels which have plastic zones, the Extended Bayesian Method(EBM) is adopted : an elasto-plastic finite element program is linked to the EBM as a mathematical model to predict the ground response. Mohr-Coulomb failure criterion is used to represent the plastic behavior. A hypothetical underground site, where the ground behaves elasto-plastically, is adopted to demonstrate the validity of the proposed feedback system.

  • PDF

Prediction of Strength for Transversely Isotopic Rock Based on Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 강도 예측)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.119-127
    • /
    • 2007
  • Based on the critical plane approach, a methodology far predicting the anisotropic strength ot transversely isotropic rock is Proposed. It is assumed that the rock failure is governed by Hoek-Brown failure criterion. In order to establish an anisotropic failure function, Mohr envelope equivalent to the original Hoek-Brown criterion is used and the strength parameters m, s are expressed as scalar functions of orientation. The conjugate gradient method, which is one of the robust optimization techniques, is applied to the failure function for searching the orientation giving the maximum value of the anisotropic function. While most of the existing anisotropic strength models can be applied only when the stress condition is the same as that of conventional triaxial compression test, the proposed model can be applied to the general 3-dimensional stress conditions. Through the simulation of triaxial compression tests for transversely isotropic rock sample, the validity of the proposed method is investigated by comparing the predicted triaxial strengths and inclinations of failure plane.

TAFEM을 이용한 터널 예제 해석

  • Jo, Seon-Gyu;Jeong, Jae-Dong;Eom, Jong-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.216-232
    • /
    • 1991
  • This Finite Element Program(TAFEM) has been developed to be able to carry out the structural analsis of tunnel section and simulate the surrounding ground behaviour due to New Austrian Tunnelling Method, of which main support is the surrounding ground, itself. The Elasto-plastic theory has been applied. The used finite elements are 8-noded isoparametric element(rock & shotcrete), 2 or 3-noded rod element(rock bolt) and infinite boundary element. The load incremental method and tangential stiffness method has been used. Associated flow rule was applied to plastic flow and yield criteria inclued not only Mohr-Coulomb but also Drucker-Prager. In this paper, Drucker-Prager yield criterion has been used. The relationship between plastic strain and stress is based on the incremental strain concept and stress-strain equation on the basis of the stress path of each gauss point has been adopted. It may be rational that rock is considered to be no-tension material, so that no-tension analysis has been adopted in accordance with the brittle fracture constitutive equation.

  • PDF

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Static behavior of a laterally loaded guardrail post in sloping ground by LS-DYNA

  • Woo, Kwang S.;Lee, Dong W.;Yang, Seung H.;Ahn, Jae S.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1101-1111
    • /
    • 2018
  • This study aims to present accurate soil modeling and validation of a single roadside guardrail post as well as a single concrete pile installed near cut slopes or compacted sloping embankment. The conventional Winkler's elastic spring model and p-y curve approach for horizontal ground cannot directly be applied to sloping ground where ultimate soil resistance is significantly dependent on ground inclination. In this study, both grid-based 3-D FE model and particle-based SPH (smoothed particle hydrodynamics) model available in LS-DYNA have been adopted to predict the static behavior of a laterally loaded guardrail post. The SPH model has potential to eliminate any artificial soil stiffness due to the deterioration of the node-connected Lagrangian soil mesh. For this purpose, this study comprises two parts. Firstly, only 3-D FE modeling has been tested to show the numerical validity for a single concrete pile in sloping ground using Mohr-Coulomb material. However, this material option cannot be implemented for SPH elements. Nevertheless, Mohr-Coulomb model has been used since this material model requires six input soil data that can be obtained from the comparative papers in literatures. Secondly, this work is extended to compute the lateral resistance of a guardrail post located near the slope using the hybrid approach that combines Lagrange FE elements and SPH elements by the suitable node-merging option provided by LS-DYNA. For this analysis, the FHWA soil material developed for application to road-base soils has been used and also allows the application of SPH element.