• 제목/요약/키워드: Modular power converters

검색결과 55건 처리시간 0.032초

중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC (Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System)

  • 리덕중;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

MMC의 순환 전류 제어기의 성능 비교 분석 (Performance Evaluation of Circulating Current Controllers in Modular Multilevel Converters)

  • 조윤재;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.73-74
    • /
    • 2014
  • 본 논문은 모듈러 멀티 레벨 컨버터 시스템에서 직류단과 레그 사이에 흐르는 순환 전류의 고조파 성분을 억제하기 위한 전류제어기들의 성능을 분석한다. 비례 적분 제어기, 공진 제어기, 반복 제어기의 성능을 PSIM 시뮬레이션을 통해 비교 분석한다.

  • PDF

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

Module Multilevel-Clamped Composited Multilevel Converter (M-MC2) with Dual T-Type Modules and One Diode Module

  • Luo, Haoze;Dong, Yufei;Li, Wuhua;He, Xiangning
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1189-1196
    • /
    • 2014
  • A modular multilevel-clamped composited multilevel converter ($M-MC^2$) is proposed. $M-MC^2$ enables topology reconfiguration, power device reuse, and composited clamping. An advanced five-level converter ($5L-M-MC^2$) is derived from the concept of $M-MC^2$. $5L-M-MC^2$ integrates dual three-level T-type modules and one three-level neutral point clamped module. This converter can also integrate dual three-level T-type modules and one passive diode module by utilizing the device reuse scheme. The operation principle and SPWM modulation are discussed to highlight converter performance. The proposed $M-MC^2$ is comprehensively compared with state-of-the-art five-level converters. Finally, simulations and experimental results are presented to validate the effectiveness of the main contributions of this study.

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

Design of Emotional Learning Controllers for AC Voltage and Circulating Current of Wind-Farm-Side Modular Multilevel Converters

  • Li, Keli;Liao, Yong;Liu, Ren;Zhang, Jimiao
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2294-2305
    • /
    • 2016
  • The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

컨버터의 출력전압 리플 저감을 위한 새로운 병렬운전 방법에 대한 연구 (A Novel Paralleling Method of Converters for Reduction of Hippie in Output Voltage)

  • 박성우;박희성;장진백;장성수;김종덕
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • For the paralleled operation of DC/DC converters, the current sharing between each modules is the most important for the reliability of the power system. Interleaving method is commonly used with many paralleling schemes for the reduction of the ripple in the output voltage of paralleled converters and there are many commercial IC for interleaving application appliable. But for all of them, it is impossible to detect the number of module in operating and then change the phase of them automatically. In this paper, a novel paralleling method is proposed for the converter parallel operation, which detects the number of modules in active and sets the phases of PWM signals applied to each modules autonomously. This can greatly improve the output voltage ripple and reliability of the system. The expandibility of modular number can be done very easily by just adding several parts.

  • PDF

EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발 (Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV)

  • 김민재;김연우;요스 프라보우;최세완
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.