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Abstract 
 

The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and 
a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member 
of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with 
direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems 
with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with 
both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic 
discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter’s independent 
currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control 
criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation 
results. 
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I. INTRODUCTION 

Nowadays, the modular multilevel converter family, which 
is also called the modular multilevel cascade converter 
(MMCC) family, has aroused a great of attention in terms of 
scientific research and industrial applications [1]-[3]. This 
began when Marquardt, R. presented and validated the 
Modular Multilevel Converter (MMC) topology under 
laboratory conditions [4] and Siemens implemented the 
HVDC-Plus project with two back-to-back (BTB) configured 
MMCs in industrial practice [5]. By comparing with an 
indirect AC/AC conversion based on BTB-MMCs, 
Baruschka, L. and Mertens, A. proposed a new three-phase 
direct AC/AC modular multilevel converter with six branches 

in a hexagonal configuration, which is called a Hexverter [6], 
[7]. The Hexverter realizes a direct AC/AC conversion 
between two three-phase systems and requires a smaller 
number of submodules (SM) than BTB-MMCs and modular 
multilevel matrix converters (M3C) [6], [8]. Therefore, a 
Hexverter can be applied to connect two grids with different 
frequencies and drive a three-phase motor from a utility grid. 

In [6] and [7], the authors described the Hexverter 
topology, developed its state-space modeling in the αβ frame, 
analyzed the operational principal and verified it with an 
experimental prototype. However, the derivation of the 
Hexverter dq model and the design of a complete control 
strategy remain open questions. First a state-space model of a 
Hexverter in the dq frames will be developed in this paper in 
order to utilize the advantages of controlling power 
converters in the synchronous rotating frame. Thanks to the 
dq transformation, the fundamental components of the current 
variables are transformed into DC components, which can 
simplify the controller design and improve the performance at 
the fundamental frequency. 
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Another important issue for the Hexverter as well as the 
other topologies in the MMCC family is their large quantity 
of control requirements, such as multiple independent current 
tracking, numerous switching combinations and internal 
branch energy balancing. This increases the difficulty of 
designing the commonly used parallel or cascaded 
multi-PI(D)s control structures while dealing with 
complicated coupling, laborious PI parameters determination, 
a unpredictable closed-loop convergence rate and full 
utilization of the high-degree freedom [9]. Furthermore, the 
control design is far from an integrated and unified method 
for fulfilling all of the control requirements. A state feedback 
control for multivariable systems shows its advantages in 
handling the aforementioned problems. In [10] and [11], a 
complete multivariable design is developed to control the 
current variables, compensate the harmonics and balance the 
internal energy distribution for the MMC. The idea for this 
control design can be described briefly as: a linear 
multivariable model for the investigated system is required 
and a quadratic cost function J is defined based on the 
concerning control criterion. A control law, which is also the 
state feedback gain K, can be determined by minimizing the 
cost function J. This design method, called a linear quadratic 
regulator (LQR), guarantees a compromise between the 
control efforts and the response speed, which inherently 
achieves a stable system. Furthermore, it is a generalized 
method and can be easily applied to other MMCC systems.  

This paper presents the dq modeling of the Hexverter with 
both-side AC systems connected and an optimal 
multivariable control design. First a brief classification of the 
MMCC is provided and the topology of the Hexverter is 
introduced. Then the Hexverter modeling in the abc frame, 
the double-SDFB equivalent method and the derivation of its 
dq state-space model are successively presented. In the 
following section, a generalized multivariable control design 
intended for regulating multiple current variables and 
rejecting the grid-side disturbances is analyzed. Finally the 
system operations and controller performance are verified by 
simulation results. 

 

II. CLASSIFICATION OF MMCCS AND THE 
DOUBLE-DELTA FULL-BRIDGE MMCC – 

HEXVERTER 
As described in [2],[3], the modular multilevel cascade 

converter (MMCC) is a family of emerging multilevel 
converters which are configured with the cascaded 
connection of full-bridge (FB) or half-bridge (HB) 
submodules by distinct topological structures. All of the 
existing MMCC topologies can be classified by their 
three-phase connection types as either star- or 
delta-connection-based MMCCs [2], [3]. A detailed 
classification is given in Table I.  

This paper discusses the Double-Delta Full-Bridge MMCC 
(Hexverter). The Hexverter is constituted by six branches, 
each of which contains a branch inductor and a certain 
number of cascaded FB submodules. The DDFB-MMCC is 
called the Hexverter, because the ring-type connection of the 
converter’s six identical branches can be regarded as a 
hexagon. The combination of the words “hexagon” and 
“converter” produce the name “hex-verter”. The following 
discussion will be based on the obtained model in the abc 
frame and extended to the dq frames by converting the 
Hexverter into two Single-Delta Full-Bridge structures. A 
multivariable optimal control strategy will be accordingly 
proposed based on the state-space representation. 

 

III. STATE SPACE MODEL OF THE HEXVERTER 
UNDER THE ROTATING dq FRAMES 

A. Hexverter Modeling  
The Hexverter is configured by six FB-submodule 

branches into a hexagonal shape and it contains six terminals 
that connect to two different three-phase AC systems 
(System1-UVW and System2-RST), as shown in Fig.1(a). 

Uu , Vu  and Wu  are the terminal voltages from 

System1-UVW and Ru , Su  and Tu  are the terminal 
voltages from System2-RST. The six terminal currents are 
also plotted with the definition of their positive directions. 
Take one branch between terminal S and W, signed as 
Branch-SW. R  and L  are the resistance and inductance 
from the branch inductor of Branch-SW. The controllable 
branch voltage SWu  originates from the cascaded FB-SMs 

and the branch current SWi  flows continuously through 
Branch-SW. Note that the six branches in the Hexverter carry 
continuous branch currents during run time, and a continuous 
mathematical modeling can be expected when compared with 
the conventional two-level converter with switched system 

TABLE I 
 CLASSIFICATION OF MMCC FAMILY 

 Configuration 
SM 
type 

Star-connection 
-based MMCCs 

Single-Star Full-Bridge (SSFB) [2] FB 
Double-Star Half-Bridge (MMC) [12]  HB 
Double-Star Full-Bridge (DSFB) [13]  FB 

Double-Star Half-Bridge Back-to-Back 
(Indirect MMC) [14]  

HB 

Triple-Star Full-Bridge (Modular 
Multilevel Matrix Converter, M3C, 

“Chainlink” converter) [15] 
FB 

Delta-connection 
-based MMCCs 

Single-Delta Full-Bridge (SDFB) 
[2],[16] 

FB 

Double-Delta Full-Bridge (DDFB, 
Hexverter) [6],[7] 

FB 
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modeling. The cascaded FB-SMs branch can be equivalent to 
a controllable voltage source, as illustrated in Fig.1(b) with 
Branch-VS as an example. The Hexverter’s AC-side systems 
(resistors, inductors and voltage sources or electromotive 
forces) are introduced later and a complete modeling for the 
Hexverter with its connected two AC systems under the 
rotating dq frames will be given at the end of this section.  

Another important definition in Fig.1(a) is the unique 
circular current ci  flowing in the hexagonal structure. 
According to the definition of the circulating current in 
MMCCs, it is a current that has no emergence at any of the 
MMCC terminals and flows only through its branches [3]. 
Therefore, there exists one and only one circulating current in 
the Hexverter, which is given as: 

)(
6
1

TUWTSWVSRVURc iiiiiii +++++=  

By adjusting the six branch voltages, the circulating 
current can be adjusted to cope with the following two 
situations: 

(1) In dynamic operation, the circulating current can be 
controlled in order to achieve a preferred energy adjustment 
and distribution among branches; 

(2) In steady state operation, the circulating current can be 
eliminated or suppressed to its minimum, while its DC 
component increases the branch energy difference and its AC 
components cause unnecessary additional branch energy 
fluctuations. 

R
L

R
L

R
L

R
L

 
Fig. 2. The reconfigured “Single-Delta”-based Hexverter. 
 

By selecting the four terminal currents Ui , Vi , Ri , Si  

and the only circulating current ci  as state variables x , the 
rest of the current variables in the Hexverter can be 
completely expressed. The six branch voltages act as control 
inputs u  and the terminal voltages act as disturbances v. 
The state-space equations (SSEs) for the Hexverter can be 
given as: 

 
EvBuAxx ++=&   (1) 

 

where [ ]TcSRVU iiiii=x  

[ ]TTUWTSWVSRVUR uuuuuu=u

[ ]TTSRWVU uuuuuu=v
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B. The Equivalent Method for Analyzing the Hexverter  
Each branch in the Hexverter connects two terminals with 

different fundamental frequencies, which indicates that each 
branch voltage in u contains voltage components from both 
frequencies. Consequently, an immediate application of the 
Park transformation to (1) encounters difficulty in dealing 
with the control inputs u dominated by multiple frequencies.  

In order to derive the dq model of the Hexverter, it is 
necessary to introduce the concept that the double-delta- 
configured Hexverter can be considered as two independent 
SDFB-MMCCs with their respective frequencies, as shown in 
Fig.2. Suppose System1-UVW has an angular velocity 1w  

and System2-RST has an angular velocity 2w . 

iW

iS

iV

iR

iU

iT

uSW

uWT

uTU

uUR

uRV

iTU

iUR

iRV

iVS

uVS

L

R

R

L

L

iWT

Branch inductor

ic

Cascaded FB-SMs branch

SM-1

SM-2

SM-N

SM
-1SM

-2

. . .SM
-N

SM
-1SM

-2

. . .SM
-N

SM-1

SM-2

SM-N

SM
-1

SM
-2

. . .

SM
-N

SM
-1

SM
-2

. . .

SM
-N

R

R

R

R
L

L

L

uV
V

S
uS

W
uW T

uT

U uU

R
uR

uSW

one FB-SM

 
(a) 

 
(b) 

Fig. 1. Schematic diagram and branch equivalent circuit of 
Hexverter. 
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The six new variables labeled in Fig.2 can then be defined 
as: 

ï
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uuu

  (2) 

 
The newly defined branch voltage UVu , which is the sum of 

the two branch voltages RVu and URu , contains only the AC 

component with the frequency 1w , while the branch voltage 

TRu  contains only the frequency component of 2w . The 

other four variables VWu , WUu , RSu and STu  are 
constituted by the single frequency component and their 
frequencies are decided by the frequencies of their attached 
AC systems. Note that only the four equations in (2) are 
independent and two new variables are still needed to fully 
substitute for the original six branch voltages.  

An independent variable, called the loop voltage Sbu , can 
be defined as the sum of all six branch voltages 

TUWTSWVSRVURb uuuuuuu +++++=S  (3) 

This can be used to adjust the circulating current ci . The last 
expression relates the potential difference between the neutral 
points from System1 and System2, which will be derived in 
the following analysis of the Hexverter AC-side connections. 
 

C. Hexverter with Both -Side AC Systems  
The both AC-side connections of the Hexverter are 

depicted, as shown in Fig.3. The two systems adopt star 
connections with their neutral points O and N. The 
three-phase voltage sources from System1-UVW and 
System2-RST can be written as: 
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where t111 wqj += , t222 wqj += , and 1q  and 2q  are 
the initial phase angles for System1 and System2, 

respectively. In this paper, it is assumed that the magnitudes 
and phase angles can be fully obtained by voltage 
transformers and PLLs. 

The voltage between N and O is called Nu  and it can be 
expressed by the six branch voltages as: 

)(
6
1

TUWTSWVSRVURN uuuuuuu -+-+-=   (4) 

Note that the floating voltage Nu  can be used together 

with ci  to adjust the branch power in dynamics [6]. 
With (3), (4) and the four independent equations in (2), a 

complete transformation from the control inputs with 
double-frequencies to new ones with single-frequencies can 
be achieved as: 
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uTu unew =  or  newu uTu 1-=     (5) 

Another necessary adaption for (1) is to rewrite the 
disturbance v  when two AC systems are connected: 

xLxRuvv &ACACNnew --+=       (6) 

where [ ]TTSRWVUnew uuuuuu ,2,2,2,1,1,1=v ,  

[ ]TNNNN uuu000=u , and ACR  and ACL  are 
the parameter matrices with regards to the both AC-side 
resistance and inductance, respectively. Substituting (5) and 
(6) back into (1) gives: 

newnew vEuBxAx ¢+¢+¢=&      (7) 
After the above pretreatment to the state-space equations 

(1), the dq model of the Hexverter can then be obtained.  
 

D. Model of Hexverter under the dq Frames 
Connecting Two AC systems  

By applying accordingly the Clark and Park transformation 
matrices to the state variables x, control inputs newu  and 

disturbances newv , the dq variables can be obtained by: 

dqx2r/2s,x2s/3s, xTTx =  

 
Fig. 3. Model of Hexverter with both-side AC systems. 
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dqu2r/2s,u2s/3s, uTTu =new  

dqv2r/2s,v2s/3s, vTTv =new  

where [ ]TcqRSTdRSTqUVWdUVW iiiii ,,,,=dqx ,  

[ ]TbNqRSTdRSTqUVWdUVW uuuuuu S= ,,,,dqu ,  

[ ]Tqdqd eeeeee 0,2,2,20,1,1,1=dqv , and x2s/3s,T , u2s/3s,T  

and v2s/3s,T  are the Clark transformation matrices for the 

state variables, control inputs u and disturbances. x2r/2s,T , 

u2r/2s,T  and v2r/2s,T  are the corresponding Park 

transformation matrices which transform the composite 
frequency components in the stationary abc frame to DC 
components in the two dq frames due to the both-side AC 
systems at different frequencies. All the transformation 
matrices can be found in the Appendix. Furthermore, by 
adopting the approximation where the branch inductance L 
and branch resistance are much smaller than the AC-side 
inductances 1L  and 2L , a simplified dq model of the 
Hexverter can finally be given as:  

dqdqdqdqdqdqdq vEuBxAx ++= )(t&   (8) 

where
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Note that the fully measurable disturbance term dqdq vE  

can be considered in the feedforward control. Therefore, it 
can be neglected in the following state feedback control 
design. The final system model (8) can be written into a 
general form as (For simplicity in writing and generality in 

illustration, the subscripts dq are removed in the following 
derivations.): 

uBAxx )(t+=&   (9) 
By inspecting the index matrices in (9), it can be seen that 

the system equations reveal a multivariable (multi-input, 
multi-output, or MIMO) feature, complicated coupling effects 
and time-varying characteristics, which will increase the 
difficulty of designing the traditional multiple-PI(D)-based 
control structure. Furthermore, the cascaded or paralleled 
multi-PI(D) configuration results in a unpredictable longer 
oscillation until the steady state and inexplicit parameter 
determination. Therefore, a multi-variable control (MVC) 
design will be proposed to handle the coupling and 
multivariable. It should be mentioned that the difference 
voltage Nu  is set to zero and removed from u  in the 
following control design, so that a square and invertible 
control matrix )(tsB  can be obtained by removing the 5th 
column from )(tB  in (9). 

 

IV. MULTIVARIABLE OPTIMAL CONTROL DESIGN 
In this section a LQR design for controlling the derived 

Hexverter’s multivariable model is described. In order to 
apply the LQR method, the original linear time-varying (LTV) 
model (9) is modeled as a p-periodic LTV system with the 
so-called hyper-period, and further discretized into a periodic 
discrete system with the p linear time-invariant (LTI) 
subsystems in each hyper-period (p is an integral). As a result, 
the LTV model (9) can be simplified into a p-periodic 
discrete LTI system with a specific discretization period, 
which can be solved by the periodic discrete LQR (PDLQR) 
method. The method of periodic discrete modeling and the 
PDLQR design are unified and characterized by easy 
expansion to other MMCC topologies. For example, the 
unified method is investigated and verified for the MMC in 
[11],[17]. Note that the obtained periodic control gain from 
the PDLQR can only regulate the state variables to the origin 
while minimizing the chosen cost function. Therefore, a 
feedforward design to introduce the reference input will be 
required to control the state variables tracking their respective 
references. In the last section, the feedforward rejection of the 
measurable grid-side voltages is discussed to complete the 
whole control structure.  

 

A. Periodic Modeling with the Hyper-Period  
The index submatrix )(tsB  in the dq model of the 

Hexverter is time-varying and actually contains two periodic 
parameters, the phase angles 1j  and 2j  and their 

respective periods 1T  and 2T . To model it as a periodic 

system, its hyper-period hT  will be determined. First write 
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1T  and 2T  into the irreducible fraction formats as 
1

1

b
a  and 

2

2

b
a . The hyper-period hT  can be then calculated as: 

),gcd(
),(lcm

21

21

bb
aaTh =  

where ) , (lcm  denotes the least common multiple of the 

two integers and ) , gcd(  calculates the greatest common 
divisor. For example, in the simulation example a Hexveter 
connects two three-phase grids with the respective periods of 

50
1

s (50Hz) and 
30
1

s (30 Hz). The hyper-period can be 

obtained as 
10
1

s, which also indicates that the period of the 

variables in )(tsB  is 0.1s.  
 

B. Discretization of periodic LTV systems  
After the hyper-period hT  is obtained, the dq model can 

be discretized by the discretization period dT  as:  

pTT hd /=  

where p  is an integer number of samples per hyper-period. 
When the chosen value of p  is large enough, the LTV 

system can be considered as LTI in each time interval dT . In 

the later simulation, p  is selected as 500, resulting a 

discretization time dT  of 0.2ms. A comprehensive 
presentation is summarized in the periodic control theory, 
which can be found in [18]. 

The system equation (9) can then be discretized by the 
selected discretization time dT  and modeled as a periodic 
discrete LTI system, which is satisfactory in each 
discretization period [19]: 

)()()1( kkk iuΓΦxx +=+     (10) 

where dTeAΦ = , ))1(()(1
dsi Ti --= - BIΦAΓ , pnik ×+= , 

{ } ..., ,3 ,2 ,1 piÎ  and ¥= ... ,3 ,2 ,1n . The resultant 
discrete-time system (10) presents periodicity and time- 
invariant in each dT , which can be regulated by a Periodic 

Discrete Linear Quadratic Regulator (PDLQR) with 
p-periodic control gains iK  ( } .., ,2 ,1 { piÎ ) for each of the 
discretization periods. 
 

C. PDLQR Design 
The PDLQR method solves the periodic control gains for 

the periodic LTI subsystems with the classic LQR in each 
discretization period. The classic LQR theory for regulating a 
LTI system can be described as [18]: for a discrete-time LTI 
plant, a control law can be defined as the feedback of the 
multiplication of the control gain matrix K  and the state 
variables )(kx : 

)()( kk Kxu -=   (11) 
such that the system can be regulated from its initial state 

)0(x  to the origin while minimizing a predefined 

discrete-time quadratic cost function J : 
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where Q indicates the symmetric nonnegative definite 
weighting matrices, namely the error weighted matrix, and R 
indicates the symmetric positive definite weighting matrices, 
namely the control weighted matrix, both of which are chosen 
by designers. The selections of Q  and R  indicate the 
relative importance of the state variables and control inputs, 
and they require a certain amount of trial and error to 
adjusting them to obtain a satisfactory control effect. The 
solution K , corresponding to each pair of Q and R, can be 
calculated by efficient computation tools. Because the 
solution is applied to a linear system, the cost function is in 
the quadratic form and it acts as a regulator. It is called linear 
quadratic regulator (LQR).  

For the PDLQR design, in each time-invariant 
discretization interval, the discrete-time quadratic cost 
function PDJ  can be accordingly given as: 
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PD kkkk uRuxQxJ  (13) 

where iQ  and iR ( ),mod( pki = ) are the i-th p-periodic 
error and the control weighted matrices in the k-th 
discretization interval, respectively. The solution method 
leads to the stationary algebraic Riccati equation (ARE) as: 

ii
T
iii

T
iiiii

T
i QΦPΓΓPΓRΓPPΦP ++-= - ))(( 1  (14) 

 
Fig. 4. Illustration of the periodic modeling, discretization and PDLQR. 
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The solution for the above equation cannot always be 
analytic. However, it can be determined by efficient 
numerical methods. The computation methods can be found 
in [20],[21] and are implemented in Matlab. As a result, they 
are neglected in this paper. The positive-definite solution Pi 
for the algebraic matrix Riccati equation (14) can be obtained 
and it will result in a control law such that: 

)()(])[()( 1 kkk iiii
T
id xKxΦPΓPΓRu -=+-= -  (15) 

where iK  is the i-th p-periodic time-invariant constant 
control gain matrix.  

The aforementioned hyper-period determination, p- 
periodic discrete LTI model transformation and PDLQR - 
based control gain design are illustrated in Fig.4. To complete 
the whole control design, the methods for introducing a 
reference input [20] and for rejecting the measurable 
disturbances [22] are respectively proposed. 

 

D. Introduction of the Reference Input 
As mentioned previously, the designed PDLQR can simply 

regulate the periodic MIMO system from any initial states to 
the origin along the optimal trajectory defined by the cost 
function PDJ . Meanwhile, it always requires a response to a 
non-zero reference or a step change in actual operation. 
Therefore, it is necessary to introduce a reference input refx  

to the existing control structure to command the state 
variables to the desired non-zero values.  

In the steady state (SS) when the reference states refx  are 

attained, equation (10) can be written as: 

irefirefrefss ,uΓΦxxx +==         (16) 

Equation (16) can be solved for: 

refiurefiiref xNxΦIΓu ,
1

, )( =-= -         (17) 

Note that the effect from the state feedback channel should 
be subtracted from the steady state control input iref ,u . Thus 

the feedforward gain iff ,N  for introducing the reference 

input can be designed as: 

iiuiff KNN += ,,  

Then the feedforward control law can be given as: 

refiffiff xNu ,, =  

which is shown in Fig.5. Note that iff ,N  is also the 

p-periodic constant gain matrix.  
 

E. Feedforward Rejection of Measurable Disturbances 
In order to implement disturbance rejection, a model 

including disturbance effects is considered and discretized as: 
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Fig. 5. PDLQR design for Hexverter. 

 
The simplest case is when the disturbances enter the input 

channel and a feedforward gain idiid ,
1

, ΓΓK -=  is 

determined for the measurable disturbances. By applying the 
control component )(,, kdqididis vKu -=  to the control inputs 

)(ku , disturbances in the k-th discretization period can be 
cancelled by: 

)()())(()()1( ,, kkkkk dqiddqidi ΦxvΓvKΓΦxx =+-+=+  

which is now independent of )(kdqv . 

As a conclusion, the proposed multivariable control 
structure is presented in Fig.5. The control configuration 
implements optimal control for the Hexverter’s five 
independent current variables, reference input tracking and 
measurable disturbance rejection. Note that all of the 
p-periodic matrices can be calculated and stored beforehand. 
By periodically applying the corresponding control gain 
matrix iK  and the feedforward gain matrices iff ,N  and 

id ,K  to update the control structure, the modeled Hexverter 

can be controlled. The presented state feedback control can 
be implemented by a lookup-table (LUT), which is of great 
advantage for real-time requirements. 

 

V. SIMULATION 
A simulation model of the Hexverter based on SSEs is 

established and it contains the proposed multivariable control 
design. The Hexverter is required to achieve direct energy 
conversion from System1-UVW to System2-RST, and a 
digital controller is implemented to control both d-axis active 
currents and to suppress the two q-axis reactive and 
circulating currents. Therefore, the whole system transfers the 
active power from one grid to another while guaranteeing a 
unity power factor for both-side grids. The simulation 
parameters are summarized in Table II. Some explanations 
should address the two periods in the table, the discretization 
period dT  and the simulation time sT . dT  depends on the 
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hyper-frequency hT  of the two AC systems and the selected 
number of samples p per hyper-period. By choosing a 
comparatively larger p, a better approximation can be 
achieved when transferring the original continuous LTV 
system into p-periodic discrete LTI system. Meanwhile, more 
periodic gains must be accordingly calculated, which requires 
a large-scale LUT. In the simulation, one discretization 
interval dT  is equally subdivided into sN  simulation steps 

and each step amounts sT  ( sds NTT /= ). According to the 
sampling principals, a better control performance can be 
achieved by increasing sN  or by decreasing sT . The 

introduced sT  allows the high-speed ADC channels to be 
fully utilized with the volume of the LUTs reduced and the 
updating times of the controller parameters limited. The 
weighting matrices Q  and R  are chosen as constant 
diagonal matrices and they guarantee good overall 
performance. 

The performance of the proposed control design is 
analyzed in terms of both steady state operation and dynamic 
step response. In Fig.6(a), the d-axis current from System1 is 
set to be 20A and accordingly the d-axis current at System2 
can be calculated as 31.24A based on the conservation of the 
power relationship. The input reference refx  is then set to 

[ ]T0024.31020 , which realizes active power 
transmission from System1 to System2 and high power 
factors at the both-side voltage sources. The both-side 
terminal currents are controlled to closely track the reference 

input with a good sinusoidal shape. It can also be seen that 
the Branch-UR contains two frequency components from the 
both-side grids and has a hyper-period of 0.1s. To test the 
dynamic response for a step reference, the reference input is 

set to be [ ]Ttref 0045.17010)25.0( =<x  and then 

changed at 0.25s to [ ]Ttref 0024.31020)25.0( =³x . In 

Fig.6(b) the PDLQR controller shows a quick response to the 
reference input change and a uniform convergence rate for all 
five current variables. The PDLQR controller inherently deals 
with the complicated coupling among the five current 
variables and achieves an overall good compromise between 
state variables tracking and control effort saving, as defined 
in the chosen cost function. 

TABLE II 
CIRCUIT PARAMETERS AND SIMULATION SETTING 

 

Hexverter 

Branch resistance R 0.1 Ω 
Branch inductance L 2.2 mH 

Number of SMs per 
branch N 10 

Nominal SM voltage USM 100 V 

System1-UVW 

Voltage magnitude U1 220 V 
Voltage frequency f1 50 Hz 
Initial phase angle θ1 0 

Resistance R1 1 Ω 
Inductance L1 10 mH 

System2-RST 

Voltage magnitude U2 110 V 
Voltage frequency f2 30 Hz 
Initial phase angle θ2 π/3 

Resistance R2 0.8 Ω 
Inductance L2 15 mH 

Difference voltage between N and O uN 0 V 
Number of samples per hyper-period p 500 

Discretization period for LTI subsystems Td 0.2 ms 
Simulation time step Ts 0.02 ms 

Simulation steps Ns 5000 

Error weighted matrix Q 
diag(22, 

44, 11, 22, 
50) 

Control weighted matrix R diag(4, 40, 
8, 80, 20) 

 

 
(a) 

 
(b) 

Fig. 6. Simulation results in steady operation and step response to 
a reference change. 
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VI.  CONCLUSIONS 
This paper presents a direct three-phase AC/AC multilevel 

converter-Hexverter (DDFB-MMCC) and its state-space 
modeling in the abc and dq frames. An equivalent method is 
applied by treating the Hexverter as two independent 
single-delta structures with respective frequencies. Thus the 
overlapping double-frequency voltage components can be 
decomposed into two respective frequencies and the Park 
transformation is applicable to the derived SSE model under 
their respective rotating dq frames. Based on the state-space 
representation, a periodic discretization method is proposed 
to transfer the original LTV system into a periodic discrete 
LTI system. Therefore, state feedback control can be 
implemented to regulate the multiple state variables in an 
optimal way defined by the cost function. By introducing 
feedforward control, a reference input can be added to the 
existing control structure and measurable disturbances can 
also be well rejected. The simulation results show the 
effectiveness and performance of the proposed multivariable 
control strategy in dealing with multiple-input and 
multiple-output Hexverter systems. 

 

APPENDIX 

The applied transformation matrices for deriving the dq 
model of the Hexverter are as follows:  
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