• Title/Summary/Keyword: Modular Platform

Search Result 81, Processing Time 0.03 seconds

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

A Study on Modular Agricultural Robotic Platform for Upland (밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구)

  • Cho, Yongjun;Woo, Seong Yong;Song, Su Hwan;Hong, Hyung Gil;Yun, Haeyong;Oh, Jang Seok;Kim, Junseong;Kim, Dong Woo;Seo, Kab Ho;Kim, Dae Hee
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

Modular and versatile platform for the benchmarking of modern actuators for robots

  • Garcia, Elena;Gonzalez-de-Santos, Pablo
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.135-161
    • /
    • 2013
  • This work presents a test platform for the assessment and benchmarking of modern actuators which have been specifically developed for the new field and service robotics applications. This versatile platform has been designed for the comparative analysis of actuators of dissimilar technology and operating conditions. It combines a modular design to adapt to linear and rotational actuators of different sizes, shapes and functions, as well as those with different load capacities, power and displacement. This test platform emulates the kinematics of robotic joints while an adaptive antagonist-load actuator allows reproducing the variable dynamic loads that actuators used in real robotics applications will be subjected to. A data acquisition system is used for monitoring and analyzing test actuator performance. The test platform combines hardware and software in the loop to allow actuator performance characterization. The use of the proposed test platform is demonstrated through the characterization and benchmarking of three controllable impedance actuators recently being incorporated into modern robotics.

Modular platform techniques for multi-sensor/communication of wearable devices (웨어러블 디바이스를 위한 다중 센서/통신용 모듈형 플랫폼 기술)

  • Park, Sung Hoon;Kim, Ju Eon;Yoon, Dong-Hyun;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.185-194
    • /
    • 2017
  • In this paper, a modular platform for wearable devices is proposed which can be easily assembled by exchanging functions according to various field and environment conditions. The proposed modular platform consists of a 32-bit RISC CPU, a 32-bit symmetric multi-core processor, and a 16-bit DSP. It also includes a plug & play features which can quickly respond to various environments. The sensing and communication modules are connected in the form of a chain. This work is implemented in a standard 130 nm CMOS technology and the proposed modular wearable platforms are verified with temperature and humidity sensors.

Improvements to a Modular Agricultural Robot Platform for Field Work (밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구)

  • Kim, Dongwoo;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Gang, Minsu;Park, Huichang;Seo, Kabho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

A new design concept for ocean nuclear power plants using tension leg platform

  • Lee, Chaemin;Kim, Jaemin;Cho, Seongpil
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.367-378
    • /
    • 2020
  • This paper presents a new design concept for ocean nuclear power plants (ONPPs) using a tension leg platform (TLP). The system-integrated modular advanced reactor, which is one of the successful small modular reactors, is mounted for demonstration. The authors define the design requirements and parameters, modularize and rearrange the nuclear and other facilities, and propose a new total general arrangement. The most fundamental level of design results for the platform and tendon system are provided, and the construction procedure and safety features are discussed. The integrated passive safety system developed for the gravity based structure-type ONPP is also available in the TLP-type ONPP with minor modifications. The safety system fully utilizes the benefits of the ocean environment, and enhances the safety features of the proposed concept. For the verification of the design concept, hydrodynamic analyses are performed using the commercial software ANSYS AQWA with the Pierson-Moskowitz and JONSWAP wave spectra that represent various ocean environments and the results are discussed.

A Design of an Open Architectural Controller Platform for Semiconductor Manufacturing Equipment (반도체 제조 장비를 위한 개방형 제어기 플랫폼 설계)

  • 장성진;김홍록;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.290-290
    • /
    • 2000
  • This paper presents some ideas about an open architectural controller platform for semiconductor manufacturing equipment First, we proposed modular-typed software architecture. Each module is composed of commands and status sets. Second, common bus protocol is suggested in order to communicate with other modules. It is designed with visual c++ programming. Finally, job program is consisted of simple commands and status. Consequently, Controllers are easily developed with some required modular assembling.

  • PDF

Development of Autonomous Aerial Target System Applying the Modular Platform (모듈형 플랫폼을 적용한 자율비행 무인표적기 시스템 개발)

  • Kim, Taewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • A modular platform development technique was proposed to minimize development cost and development period by utilizing the already developed unmanned Aerial target AVT, which has been operated and verified for many years. New Mission Profile was designed and structural analysis was performed through finite element analysis (FEA) by analyzing mission requirements for visual short-range, non-visible mid-range, and long-range targets. The targets are used for guided missile anti-aircraft training. In addition, avionics systems including flight control computers for autonomous flights were developed to verify their conformance by performing launcher take-off tests with rapid acceleration changes and autonomous flight tests at a maximum speed of 300km per hour.

The Study of Security Life Cycler Energy Service Platform or Universal Middleware (유니버설미들웨어상의 생명주기기반 보안에너지 서비스플랫폼 연구)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.291-293
    • /
    • 2017
  • Security services that support electric energy service gateway require relatively high reliability. In particular, the application services that accompany communications and data are run organically. Each of the security services should support a secure service platform that supports a secure, scalable life cycle for existing services which should be extends security layer of Universal Middleware such as OSGi platform. In this convergence platform, it is the study of security transfer modular services that allow independent life cycle management of systems through Universal middleware. First, It is modular in terms of energy consumption service and data, enabling real-time operation, communications, remote management and applications. Second, the life cycle of the secure module to support the life cycle of secure, delete, start and updating of the security module by applying the security policy module layer concept. It is modular in terms of power generation and accountability, enabling us to distinguish between reliability and accountability in a large volume of data models in the smart grid, the service was intended to be standardized and applied to the security service platform.

  • PDF

The Security Life Cycler Energy Service Platform for Universal Middleware (유니버설미들웨어기반 생명주기 보안에너지 서비스플랫폼 연구)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1197-1202
    • /
    • 2017
  • Security services that support electric energy service gateway require relatively high reliability. In particular, the application services that accompany communications and data are run organically. Each of the security services should support a secure service platform that supports a secure, scalable life cycle for existing services which should be extends security layer of Universal Middleware. In this convergence platform, it is the study of security transfer modular services that allow independent life cycle management of systems through Universal middleware. First, It is modular in terms of energy consumption service and data, enabling real-time operation, communications, remote management and applications. Second, the life cycle of the secure module to support start, stop and updating of the security module by applying the security policy module layer concept. It is modular system enabling to design of dyanmic models in the smart grid, the service was intended to be standardized and applied to the security service platform.