• Title/Summary/Keyword: Modular Multiplication

Search Result 113, Processing Time 0.023 seconds

Optimization of Approximate Modular Multiplier for R-LWE Cryptosystem (R-LWE 암호화를 위한 근사 모듈식 다항식 곱셈기 최적화)

  • Jae-Woo, Lee;Youngmin, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.736-741
    • /
    • 2022
  • Lattice-based cryptography is the most practical post-quantum cryptography because it enjoys strong worst-case security, relatively efficient implementation, and simplicity. Ring learning with errors (R-LWE) is a public key encryption (PKE) method of lattice-based encryption (LBC), and the most important operation of R-LWE is the modular polynomial multiplication of rings. This paper proposes a method for optimizing modular multipliers based on approximate computing (AC) technology, targeting the medium-security parameter set of the R-LWE cryptosystem. First, as a simple way to implement complex logic, LUT is used to omit some of the approximate multiplication operations, and the 2's complement method is used to calculate the number of bits whose value is 1 when converting the value of the input data to binary. We propose a total of two methods to reduce the number of required adders by minimizing them. The proposed LUT-based modular multiplier reduced both speed and area by 9% compared to the existing R-LWE modular multiplier, and the modular multiplier using the 2's complement method reduced the area by 40% and improved the speed by 2%. appear. Finally, the area of the optimized modular multiplier with both of these methods applied was reduced by up to 43% compared to the previous one, and the speed was reduced by up to 10%.

High Performance Implementation of SGCM on High-End IoT Devices

  • Seo, Hwajeong
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.212-216
    • /
    • 2017
  • In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT platforms (ARM-NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations. When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we performed the encryptions on the ARM module.

Design of LSB Multiplier using Cellular Automata (셀룰러 오토마타를 이용한 LSB 곱셈기 설계)

  • 하경주;구교민
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Modular Multiplication in Galois Field GF(2/sup m/) is a basic operation for many applications, particularly for public key cryptography. This paper presents a new architecture that can process modular multiplication on GF(2/sup m/) per m clock cycles using a cellular automata. Proposed architecture is more efficient in terms of the space and time than that of systolic array. Furthermore it can be efficiently used for the hardware design for exponentiation computation.

  • PDF

A Design of Efficient Modular Multiplication based on Montgomery Algorithm (효율적인 몽고메리 모듈러 곱셈기의 설계)

  • Park, Hye-Young;Yoo, Kee-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1003-1006
    • /
    • 2004
  • 본 논문에서는 몽고메리 모듈러 곱셈(Montgomery Modular Multiplication) 알고리즘을 이용하여 효율적인 모듈러 곱셈기를 제안한다. 본 논문에서 제안한 곱셈기는 프로그램 가능한 셀룰라 오토마타(Programmable Cellular Automata, PCA)를 기반의 구조로 설계되어 하드웨어 복잡도를 줄이고, 곱셈시 몽고메리 알고리즘을 이용하여 일반적인 나눗셈 없이 모듈러 연산을 수행하여 시간 복잡도를 최소화 한다. 제안된 곱셈기는 시간적, 공간적인 면에서 간단하고 효과적으로 구성되어 지수연산을 위한 하드웨어의 하부구조나 오류 수정 코드(Error Correcting Code)의 연산에서 효율적으로 이용될 수 있을 것이다.

  • PDF

Scalable RSA public-key cryptography processor based on CIOS Montgomery modular multiplication Algorithm (CIOS 몽고메리 모듈러 곱셈 알고리즘 기반 Scalable RSA 공개키 암호 프로세서)

  • Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.100-108
    • /
    • 2018
  • This paper describes a design of scalable RSA public-key cryptography processor supporting four key lengths of 512/1,024/2,048/3,072 bits. The modular multiplier that is a core arithmetic block for RSA crypto-system was designed with 32-bit datapath, which is based on the CIOS (Coarsely Integrated Operand Scanning) Montgomery modular multiplication algorithm. The modular exponentiation was implemented by using L-R binary exponentiation algorithm. The scalable RSA crypto-processor was verified by FPGA implementation using Virtex-5 device, and it takes 456,051/3,496347/26,011,947/88,112,770 clock cycles for RSA computation for the key lengths of 512/1,024/2,048/3,072 bits. The RSA crypto-processor synthesized with a $0.18{\mu}m$ CMOS cell library occupies 10,672 gate equivalent (GE) and a memory bank of $6{\times}3,072$ bits. The estimated maximum clock frequency is 147 MHz, and the RSA decryption takes 3.1/23.8/177/599.4 msec for key lengths of 512/1,024/2,048/3,072 bits.

GENERATION OF RAY CLASS FIELDS OF IMAGINARY QUADRATIC FIELDS

  • Jung, Ho Yun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.317-326
    • /
    • 2021
  • Let K be an imaginary quadratic field other than ℚ(${\sqrt{-1}}$) and ℚ(${\sqrt{-3}}$), and let 𝒪K be its ring of integers. Let N be a positive integer such that N = 5 or N ≥ 7. In this paper, we generate the ray class field modulo N𝒪K over K by using a single x-coordinate of an elliptic curve with complex multiplication by 𝒪K.

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.907-928
    • /
    • 2015
  • We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.

Fast exponentiation with modifed montgonmery modular multiplication (Montgomery 모듈라 곱셈을 변형한 고속 멱승)

  • 하재철;문상재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1036-1044
    • /
    • 1997
  • We modify the montgomery modeular multikplication to extract the common parts in common-multiplicand multi-plications. Since the modified method computes the common parts in two modular multiplications once rather than twice, it can speed up the exponentiations and reduce the amount of storage tables in m-ary or windowexponentiation. It can be also applied to an exponentiation mehod by folding the exponent in half. This method is well-suited to the memory limited environments such as IC card due to its speed and requirement of small memory.

  • PDF

Design of Linear Systolic Arrays of Modular Multiplier for the Fast Modular Exponentiation (고속 모듈러 지수연산을 위한 모듈러 곱셈기의 선형 시스톨릭 어레이 설계)

  • Lee, Geon-Jik;Heo, Yeong-Jun;Yu, Gi-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • 공개키 암호화 시스템에서 주된 연산은 512비트 이상의 큰 수에 의한 모듈러 지수 연산으로 표현되며, 이 연산은 내부적으로 모듈러 곱셈을 반복적으로 수행함으로써 계산된다. 본 논문에서는 Montgomery 알고리즘을 분석하여 right-to-left 방식의 모듈러 지수 연산에서 공통으로 계산 가능한 부분을 이용하여 모듈러 제곱과 모듈러 곱셈을 동시에 수행하는 선형 시스톨릭 어레이를 설계한다. 설계된 시스톨릭 어레이는 VLSI 칩과 같은 하드웨어로 구현함으로써 IC 카드나 smart 카드에 이용될 수 있다.Abstract The main operation of the public-key cryptographic system is represented the modular exponentiation containing 512 or more bits and computed by performing the repetitive modular multiplications. In this paper, we analyze Montgomery algorithm and design the linear systolic array for performing modular multiplication and modular squaring simultaneously using the computable part in common in right-to-left modular exponentiation. The systolic array presented in this paper could be designed on VLSI hardware and used in IC and smart card.

Cellular Automata and It's Applications

  • Lee, Jun-Seok;Cho, Hyun-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.610-619
    • /
    • 2003
  • This paper presents a concept of cellular automata and a modular exponentiation algorithm and implementation of a basic EIGamal encryption by using cellular automata. Nowadays most of modular exponentiation algorithms are implemented by a linear feedback shift register(LFSR), but its structure has disadvantage which is difficult to implement an operation scheme when the basis is changed frequently The proposed algorithm based on a cellular automata in this paper can overcome this shortcomings, and can be effectively applied to the modular exponentiation algorithm by using the characteristic of the parallelism and flexibility of cellular automata. We also propose a new fast multiplier algorithm using the normal basis representation. A new multiplier algorithm based on normal basis is quite fast than the conventional algorithms using standard basis. This application is also applicable to construct operational structures such as multiplication, exponentiation and inversion algorithm for EIGamal cryptosystem.

  • PDF