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Cellular Automata and It’s Applications

Jun-Seok Lee, Hyun-Ho Cho and Kyung-Hyune Rhee

ABSTRACT

This paper presents a concept of cellular automata and a modular exponentiation algorithm and
implementation of a basic ElGamal encryption by using cellular automata. Nowadays most of modular
exponentiation algorithms are implemented by a linear feedback shift register(LFSR), but its structure
has disadvantage which is difficult to implement an operation scheme when the basis is changed
frequently. The proposed algorithm based on a cellular automata in this paper can overcome this
shortcomings, and can be effectively applied to the modular exponentiation algorithm by using the
characteristic of the parallelism and flexibility of cellular automata. We also propose a new fast multiplier
algorithm using the normal basis representation. A new multiplier algorithm based on normal basis is
quite fast than the conventional algorithms using standard basis. This application is also applicable to
construct operational structures such as multiplication, exponentiation and inversion algorithm for

ElGamal cryptosystem.
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1. INTRODUCTION

A cellular automata(CA) is a mathematical
model for complex natural system containing
large number of simple identical components with
local interactions. Since the pioneering work of
John von Neumann during 1950s, S. Wolfram et.
al. have studied one-dimensional, null and periodic
boundary additive CAs with the help of polynomial
algebral1,2]. And he first also introduced CA in
application of cryptography{3]. Another applica-
tions on cryptography are reported in[4-7]. Das et.
al. analyzed CA with the help of matrix algebral8].
Applications of CAs in various fields have also
been proposed such as theory and applications for
error correcting codes, VLSI applications, and test
pattern generators as an alternative to LFSR for
built-in self-test of digital systems[9-15]. A study
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for the existence of isomorphism between LFSR
and 1-D linear hybrid cellular automata(LHCA) is
reported in[16-18].

Since a CA has a simple, regular and modular
structure, it is useful for hardware design in VLSIL.
In this paper, it is shown that advanced pro-
grammable cellular automata(APCA) can be car-
ried out modular exponentiation over extended field
GF(2™) of GF(2) and the ElGamal cryptosystem
(19].

This paper is organized as follows. Section 2
introduce a basic concept of CA and ElGamal
cryptosystem[20]. In Section 3, the structure of
operation using the APCA is designed. And we
propose a new fast scheme based on normal basis
to implement the ElGamal cryptosystem in Section
4. Finally, we have conclusions in Section 5.

2. CA AND THE ELGAMAL PUBLIC
KEY CRYPTOSYSTEM

2.1. Cellular automata(CA)

A cellular automata is a finite state machine
which consists of a simple identical array of sites



called cell. At discrete time step, each cell evolves
in synchronous to the output of a function called
a transition function or rule. The rule is used to
determine the next state of a given cell based on
state value of its neighbors. If cell { can com-
municate only with its k neighbors, then it is called
k-neighborhood CA and the next state of cell
depends on the present states of k neighbors by
transition function.

Table 1 specifies some rules of 2-state 3-
neighborhood NBCA. 8-bit binary number in each
low, expressed in equivalent decimal form gives a
convenient scheme for representing the CA rule.
For a CA with cells having only 2-state 3-
neighborhood, there can be a total of 2° distinct
neighborhood configuration and a 2% =295
distinct rules.

The next state transition of the i—th cell can be
represented as a function of the present state of
the (i-1)-th, i-th and (i+1)-th cell:

1
= f(Sg—l, 55; Sfﬂ)

where, fis known as the rule of the CA denoting
the combination logic and s! is state of i~th cell
at time step ¢ Rule 90 and rule 150 in Table 1 can

be expressed such as following.

t+1 t t
S; =5 D sty

t+1 ¢t t t
S; = 8§i @ S; (&) Si+1

Fig. 1 specifies a cell structure of 3-neigh-
borhood CA.

Realization of different CA configuration on the
same structure can be achieved using a control
logic to control appropriate switches. Such a

Table 1. Example of rule representation

Rules 1111110101 /100|011 | 010001 | 000

re60 | 0011 ]1]1[1]0]0
| e o101 ]1lol1 0
rle150 | 1] 00|10 1]1]o0
rle102 0| 1]1]0l0]1]1]o0
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Fig. 1. A cell structure of 3-neighborhood CA

structure is referred to as a programmable CA
(PCA). This structure is shown in Fig. 2 for 3-
neighborhood CA, where CI, Cs, and Cr are control
signals applied in each cell at time step respec-
tively.

In the CA structures, there are various boundary
conditions. That are null, periodic and intermediate
boundary conditions. If extreme cells, left most cell
and right most cell, are connected to null, logical
0, then it is called to NBCA(null boundary CA) and
if extreme cells treat to successive cell then it is
called to PBCA(periodic boundary CA) and if the
next state of the left and right most cell are
connected to the one next to it, it is called to
IBCA (intermediate boundary CA).

CA can be classified in various way. The CA
employing only XOR logic are referred to as linear
CA, otherwise they are called nonlinear CA. If in
a CA the same rule applies to all the cells, then
the CA is called a uniform CA, whereas if different

Cell # i

# i1 4%4——#”1

Control ———-—J

Cr

Fig. 2. A cell structure of programmable CA(PCA)
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Fig. 3. Boundary conditions of 1-D CA(NBCA, PBCA and IBCA)

rules are applied over different cells, then it is
called a hybrid CA. Fig. 4 shows a 4-cell null
boundary linear hybrid CA(4-cell NBLHCA) with
rules (90, 150, 90, 150).

2.2. The ElGamal public key encryption
The ElGamal cryptosystem is a public key
cryptosystem based on the difficulty of the discrete
logarithm problem over the finite fields. This

algorithm have 3-step processes as following.

2.2.1. Key generation step

Each user create a public key and corresponding
private key

(a) Select a large random prime p and a generate
a of the multiplicative group Z; of the integer
modulo p

(b) Select a random integer a and compute

] ) 1 ’
Celi-1 Cell-2 Cell-3 Cell-4
[ [
o 1) | L G
RSO R150 RI0 R150

Fig. 4. A 4-cell NBLHCA with rules (90, 150, 90,
150)

2 modp (1< a<p—2)
(c) User A’s public key is (p, e, ¢*) and

private key is a

2.2.2. Encryption step(sender)
Sender B encrypts a message m for receiver A
(a) Obtain user A's public key (p, a, a“)
(b) Represent the message as an integer m in
the range Z, = (0, 1, -, p—1)
(c) Select a random integer k, (1< a<p—2)
(d) Compute 8= o" mods and y =
m- (a®)* modp
(e) Send the ciphertext c touser A, ¢ = (4, 7)
2.2.3. Decryption step(receiver)

Receiver A decrypts message m from ciphertext

(a) Compute A?7!7%= B7% mods using the
private key a
(b)  Decrypt

y- (@™ *)* modp

message m by computing

3. A PROPOSED STRUCTURE TO
IMPLEMENT THE ELGAMAL CRYP-
TOSYSTEM

In this section we describe algorithms to



implement the ElGamal cryptosystem using the
elements of extended field constructed by gen-—
erator g(x).

To implement this system, first we propose a
cell structure of advanced programmable cellular
automata(APCA) and algorithms for multipli-
cation, exponentiation and inversion by using the
APCA structure. Moreover these proposed algo—
rithms are simulated by C++ compiler for a small

size n.

3.1. Advanced programmable cellular au-
tomata

A cell structure of APCA improves a structure
of PCA introduced byl4]. We only consider a cell
structure of APCA with 3-neighborhood depen-
dencies. In APCA, each cell has three control
signals Cs, Cr and sel. The control signal sel is
used to choose cell’s neighbors, that is, if sel signal
is logical 0, then cell operation chooses itself as self
input and right neighbor as right input. Otherwise
cell operation choose Data value as self input and
Rn value as right input.

The rules of the APCA are also based on
combination of control signals of Cs and Cr, and
the rules applied to each of APCA are same as
those defined in Table 2.

The proposed APCA is a flexible structures, so
it can be used as a conventional 3-neighborhood

F-) Cell # i

Data ——— MUX sel
#i-1 —fﬂ:’é MUX # i+1
Cs T
Rn
Cr

Fig. 5. A cell structure of advanced PCA
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Table 2. Rules of APCA

Cs Cr Rules Transition function f

1 0 | rule 60 sitl=sl_, @ s

0 1 rule 90 sttt =5l @ sy

1 1 |rule 150 | s/™1 =5t @ st @ sty
0 0 | rule 240 st =5l

CA as well as LFSR and the division circuit by
choosing control signal values properly. If sel
signal is 0 then APCA is a conventional 3-
neighborhood CA. If sel signal is 1 then this
structure is the polynomial modular multiplier
which has Data value and current CA state as
input values, where signals Cs and Cr are co-
efficients of multiplicand and primitive polynomial
respectively. This sturcture is a new modular

multiplier structure using a cellular automata.

3.2. The polynomial modular multiplier
using the APCA

The modular multiplication operation can be
constructed by performing multiplication and di-
vision operation at the same time. In general, these
circuits are constructed by LFSRI{19}. However, we
consider a APCA structure for the modular mul-
tiplication circuit such like Fig. 6. A set-up values
of Cs, Cr, sel and Data can be established as

following:

- Data : coefficients of a multiplier polynomial
- Cs ' coefficients of a multiplicand polynomial
- Cr : coefficients of a primitive polynomial

- sel : logical 1

where, the value of Data, that is, coefficients of
multiplier polynomial, is applied in a descending

order at all cell.

3.3. The exponentiation and inversion
algorithm

The polynomial modular exponentiation,
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Fig. 6. The multiplication circuit using a APCA

s(x)¢ mod p(x), can be implemented by using two
multiplication circuits such as a circuit shown in
Fig. 6, where e is represented by an n-tuple binary
vector, e = (¢, e, ey -+, €,-,) and p(x) is an
n-degree primitive polynomial generated over
extended field GF(2"). One circuit is used for a
multiplication operation and other circuit is used
for a square-multiply. The procedure of this

exponentiation algorithm is given as following:

Stepl: C=1, E= s(x)
- Step 2t If e;=1 then compute C=

C - E mod p(x) otherwise go to Step 3

Step 3 : Compute E = E’mod p(x)
Step 4 : Repeat Step 2 and Step 3 till n-1 is
reached

t

- The result is in C.

Where, Step 2 is achieved by a multiplier proposed
in section 3.2 and square-multiply in Step 3 is also
achieved using another multiplier. The simulation
is demonstrated by a software tool.

Now, let g(x) be a generator polynomial over
extended field GF(2"). Then any element over
extended field GF(2") is expressed by a generator
g(x) according to the standard basis and it is clear
that g(x) ¥ ™! = 1. Therefore inversion of any
element over GF(2") can be computed by using
g(x) "% = g(x) ¥ 7172 This is also implemented by
an exponentiation algorithm as mentioned above.

3.4. Implementation of the EIGamal cryp-
tosystem

This section shows the implementation of

ElGamal cryptosystem over GF(2") using the CA.
To implement the ElGamal cryptosystem, pro-
cedures are given as follows:

3.4.1. Key generation step

(a) Select p(x) of degree n and generator g(x)
over extended field GF(2")

(b) Select random number a and compute
£(x)* mod p(x)

(¢) User A’s public key is (g(x), p(x),

g(x)® modp(x)) and private key is a

3.4.2. Encryption step

(a) Replace the message m(x) into the element
of extended field GF(2")

(b) Select
1<k<2"-2

random number k,  where

8= g(x)* modp(x) and y=
m(x) - g(x) “* mod p(x)
(d) Send the ciphertext c¢={(8, 7) to user A

(c) Compute

3.4.3. Decryption step

(a) Compute 8% = 82717 = g(x) ** using the
private key a
(b) Decrypt message m(x) by computing

7. B4 = (m(x) - g(x) ¥ g(x) ~**) modp(x)



4. A NEW MULTIPLIER BASED ON
NORMAL BASIS

The extension field GF(2") of GF(2) is
considered as an n-dimensional vector space
defined over nk GF(2). To express all elements of
a field, a set of n linearly independent vectors can
be chosen, which is called as a basis. The most

commonly used bases are following :

- Standard basis : an easy way to choose a basis

is an ordered set (1, a, % -+, @""') where
a <€ GF(2"). It is called the standard basis.

- Normal basis If the set of elements

(,82“, ,82‘,,82!--',/32"—1) forms a basis, then this is
called the normal basis, where ge GF(2").

In general, the operation structure based on
normal basis is very effective in performing
operations such as finding the inverse element and
the squaring or exponentiation of a finite field
element. In this section, we propose a new
multiplier based on normal basis. A proposed
structure is very fast than other conventional
algorithm in performing the arithmetic operation
such as multiplication, exponentiation and in-
version, and it is possible to construct the operation
structure for implementation of ElGamal en-

cryption algorithm.

4.1. Multiplier operation based on normal
basis

The multiplier implementation of a field GF(2")
is very difficult in the view point of hardware
complexity. However, in the case of normal basis,
by using a suitable element 5, a hardware com-
plexity can be reduced, where § is an element of
a field GF(27). This basis is called the optimal
normal basis. The construct of optimal normal
basis is studied by Gao, et al.[21-26]. This mul-

tiplier is constructed as following.

Let x, ye GF(2") be elements represented by
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normal basis. Then these can be written by

X = (ﬂo, ay, v, Qi "t Cln-l)

y = (bo, b]. ey by, bn—l)

where, «, and b, are elements of GF(2), i>1.

Now, let z = x-3, then z is written by

z= Zbk-(x-ﬂzk)

‘That is, to implement z = x -3, it is required
the computation of x- BZ‘ 0<k<n—1). Our
algorithm only requires the computation of x- 4.

The procedure of our algorithm is as following:

- Step 1 : Compute x- 6
- Step 2 : If b, = 1, store the result in a buffer
otherwise go to Step 3
— Step 3 : Left cyclic shift values of x and buffer
respectively by 1-bit
- Step 4 : Repeat for Step 1 to Step 3 till
k= n—1

Moreover, the implementation of x- 4 can be
accomplished with only two-cell dependency by
using an optimal normal basis and the hardware
complexity requires only n-1 XOR gates, and the
number of clock for this computation is only n.

A pseudo—code for this multiplier is given as

following.

multiplication(x, y){
buffer = 0;
for(k=0; k<=n-1; k++){
if(IsBitSet(y k)) buffer"=Fbox(x);
x=left_cyclic_shift(x);
buffer=left_cyclic_shift(buffer);
} return buffer;
}
For example, in the case of a normal basis
multiplier with p(x) = 1 + x° + x'° as a primitive
polynomial and 8= &® as optimal normal basis,

we get a vector representation and logic circuit to

x + f given in Fig. 7. This logic circuit can be easily
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Fig. 7. The logic circuit of x4 for p(x) = 1 + #° + 2, 8= %

implemented by LHCA.

4.2. Squaring operation

When field elements over GF(2™) are expressed

in normal basis, representation of x°

for any
element x can be easily obtained from the
representation of x by simply a right cyclic shift.
This is a natural property of normal basis elements.
Therefore, if x=(ay, a,, ay, -+, a,-1) is any
element which is expressed in normal basis then

%% is written by

2
x=(a,—1, ay, ai, *, Gy_3).

As a shown, it has a very brief representation
computing to a standard basis.

4.3. Exponentiation operation

Exponentiation operation can be performed by
using the multiplication and squaring operation
described in Section 4.1. A pseudo—-code is given
as following:

Exponentiation(x, power){
initialize mul_buffer;
initialize squ_buffer;
if(power==0) return mul_buffer;
if(power==1) rerurn x;
temp=x,

for(k=0; k<=I;, k++){

squ_buffer=mul_buffer;
if(IsBitSet(power, k))
mul_buffer=multiplication(x, squ_buffer);

}

else{
temp=right_cyclic_shift(temp);
squ_buffer=temp;

}

if (IsBitSet(power, k))
mul_buffer=multiplication(mul_buffer,
squ_buffer);

} return mul_buffer;

}

4.4. Inversion operation

The inversion of any element expressed in
normal basis is also computed by using the fact
that x~! = x2""% This algorithm is implemented
by our proposed algorithms such as multiplication,
squaring and exponentiation algorithm as men-
tioned in Section 4.3.

5. CONCLUSIONS

We considered one dimensional CA as a poly-
nomial modular exponentiation operation tool for a
given extended field GF(2") of GF(2). To im-
plement this structure we reconstructed a cell



structure of CA. The proposed structure is a very
flexible one which can be effectively applied to the
operation scheme which needs a frequent change
of the multiplier, multiplicand and primitive pol-
ynomial. Using the proposed structure we imple-
mented ElGamal cryptosystem and simulated for
a simple example by the C++ complier.

Furthermore, we proposed a new multiplier al-
gorithm based on optimal normal basis, and con-
structed operation schemes for the implementation
of ElGamal cryptosystem. Qur proposed scheme is
very fast algorithm than the conventional schemes
to compute the arithmetic operations such as
multiplication, squaring, exponentiation and in-
version operation.

For further research, we are trying to improve
the performance of our scheme and apply it to other
crytposystems. It would be interesting to try to
construct various CA which are applicable to
cryptographic primitives such as modular multi—
plication, division and exponentiation over an
extended field GF(p"), » > 1. Moreover the pro-
posed structure can be easily modified to apply
basic Diffie-Hellman key exchange protocol.
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