• 제목/요약/키워드: Modified silica

검색결과 258건 처리시간 0.029초

Synthesis of spherical silica aerogel powder by emulsion polymerization technique

  • Hong, Sun Ki;Yoon, Mi Young;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.145-148
    • /
    • 2012
  • Spherical silica aerogel powders were fabricated via an emulsion polymerization method from a water glass. A water-in-oil emulsion, in which droplets of a silicic acid solution are emulsified with span 80 (surfactant) in n-hexane, was produced by a high power homogenizer. After gelation, the surface of the spherical silica hydrogels was modified using a TMCS (trimethylchlorosilane)/n-hexane solution followed by solvent exchange from water to n-hexane. Hydrophobic silica wet gel droplets were dried at 80 ℃ under ambient pressure. A perfect spherical silica aerogel powder between1 to 12 ㎛ in diameter was obtained and its size can be controlled by mixing speed. The tapping density, pore volume, and BET surface area of the silica aerogel powder were approximately 0.08 g·cm-3, 3.5 ㎤·g-1 and 742 ㎡·g-1, respectively.

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.

Characterizations of Modified Silica Nanoparticles(I)

  • Min, Seong-Kee;Park, Chan-Young;Lee, Won-Ki;Seul, Soo-Duk
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.275-279
    • /
    • 2012
  • (3-mercaptopropyl)trimethoxysilane (MPTMS) was used as a silylation agent, and modified silica nanoparticles were prepared by solution polymerization. 2.0 g of silica nanoparticles, 150 ml of toluene, and 20 ml of MPTMS were put into a 300 ml flask, and these mixtures were dispersed with ultrasonic vibration for 60 min. 0.2 g of hydroquinone as an inhibitor and 1 to 2 drops of 2,6-dimethylpyridine as a catalyst were added into the mixture. The mixture was then stirred with a magnetic stirrer for 8 hrs. at room temperature. After the reaction, the mixture was centrifuged for 1 hr. at 6000rpm. After precipitation, 150 ml of ethanol was added, and ultrasonic vibration was applied for 30 min. After the ultrasonic vibration, centrifugation was carried out again for 1 hr. at 6000rpm. Organo-modification of silica nanoparticles with a ${\gamma}$-methacryloxypropyl functional group was successfully achieved by solution polymerization in the ethanol solution. The characteristics of the ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) were examined using X-ray photoelectron spectroscopy (XPS, THERMO VG SCIENTIFIC, MultiLab 2000), a laser scattering system (LSS, TOPCON Co., GLS-1000), Fourier transform infrared spectroscopy (FTIR, JASCO INTERNATIONL CO., FT/IR-4200), scanning electron microscopy (SEM, HITACHI, S-2400), an elemental analysis (EA, Elementar, Vario macro/micro) and a thermogravimetric analysis (TGA, Perkin Elmer, TGA 7, Pyris 1). From the analysis results, the content of the methacryloxypropyl group was 0.98 mmol/g and the conversion rate of acrylamide monomer was 93%. SEM analysis results showed that the organo-modification of ultra-fine particles effectively prevented their agglomeration and improved their dispensability.

Modified Chloroprene Rubber를 이용한 Primer 제조 및 특성평가 (Characterization of Modified Chloroprene Rubber by Nanosilica as a Primer)

  • 임경은;정부영;천정미;최민지;천제환
    • 접착 및 계면
    • /
    • 제19권1호
    • /
    • pp.1-4
    • /
    • 2018
  • 본 연구에서는 부착력 향상 및 모바일 기기용 toluene-free 프라이머를 제조하기 위해 클로로프렌 고무 (CR)에 실리카 나노입자를 분산시켜 CR/silica 복합체를 제조하였다. CR/silica 복합체는 FT-IR, SEM, EDS 등을 이용하여 물성을 평가하였다. SEM을 통해 실리카 나노입자의 함량이 4 phr일때 가장 균일하게 분산되어 있는 것을 확인하였다. 접촉각과 연필경도측정을 통해 실리카 함량이 증가할수록 소수성을 띠는 것과, 연필경도가 증가함을 나타내었다. 부착력 결과 역시 실리카 함량이 4phr일때 가장 높았으며, 실리카가 함유되지 않은 P-0에 비해 50% 증가함을 확인하였다.

교면포장용 콘크리트 슬래브의 성능평가에 대한 비교 연구 (A Comparative Study on the Performance Evaluation of Concrete Slab for Bridge Deck Overlay)

  • 이지훈;박준석;김두환
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.483-486
    • /
    • 2007
  • The present study is an exploratory research concerned with evaluation of three types of high performance concrete for bridge deck applications. These include A-Type (silica fume 6%), B-Type (silica fume 6% plus fly ash 20%), C-Type (silica fume 6% plus blast-furnace slag 40%). Test results compare with Latex modified concrete (LMC) and Ordinary portland cement concrete (OPC). The results indicates that high performance concrete for bridge deck overlay shows the excellent mechanical and durability performance for LMC and OPC in case of static loading test. Analytical results are similar with experimental results. However there are relative errors of $1{\sim}4mm$ for deflection and maximum 12% for strain.

  • PDF

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

  • He, Wentao;Wu, Danhua;Li, Juan;Zhang, Kai;Xiang, Yushu;Long, Lijuan;Qin, Shuhao;Yu, Jie;Zhang, Qin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2747-2752
    • /
    • 2013
  • Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang;Xu, Zhen-Liang;Yang, Hu;Wei, Yong-Min
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.317-325
    • /
    • 2018
  • Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

Photoluminescence Characteristics of the Light-Emitting Chromophores Obtained from Organic-Inorganic Hybrid Silica Spheres

  • Park, Eun-Hye;Jeong, Chang-Gi;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.93-97
    • /
    • 2016
  • Light-emitting chromophores have been separated from silica spheres modified the surface with 3-(trimethoxysilyl)propylmethacrylate (TMSPM). The photoluminescence characteristics of the chromophores were investigated with various excitation wavelengths. The TMSPM was attached to the surface of silica spheres at $75^{\circ}C$. Large number of round shaped particles of the TMSPM was on the surface of silica spheres after 3 h reaction. The TMPSM was completely covered on the surface of the spheres after 6 h reaction. The surface modified silica spheres were soaked into acetone and stored for 20 days at ambient condition. The solution color slowly changed from light yellow to deep yellow with the increase of the storing time. The FTIR absorption peaks at 3348, 2869, 2927, 1715, 1453/1377, 1296, and $1120cm^{-1}$ represent C-OH, $R-CH_3$, $R_2-CH_2$, -C=O, C-H, C=C-H, and Si-O-Si absorption, respectively. The FTIR absorption peak at $1715cm^{-1}$ representing the ester -C=O stretching vibration for silica spheres stored for 20 days was increased compared with the spheres without aging. The UV-visible absorption peaks were at 4.51 eV (275 nm) and 3.91 eV (317 nm). There were two luminescence peaks at 2.51 eV (495 nm) and 2.25 eV (550 nm). The emission at 2.51 eV was dominant peak when the excitation energy was higher than 2.58 eV, and emission at 2.25 eV became dominant peak when the excitation energy was lower than 2.58 eV.

졸-겔 공정으로 제조한 나노 실리카의 표면개질 및 가스차단성 필름으로의 응용 (Surface Modification of Nano Silica Prepared by Sol-gel Process and Subsequent Application towards Gas-barrier Films)

  • 장효준;장미정;남광현;정대원
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.68-73
    • /
    • 2019
  • 실리카 표면의 개질을 위하여 다양한 조건 하에서 tetraethyl orthosilicate (TEOS)로부터 졸-겔 공법으로 제조한 실리카 졸에 실란 커플링제인 octyltrimethoxysilane (OTMS) 또는 hexadecyltrimethoxysilane (HDTMS)을 반응시켰다. 얻어진 반응물들의 SEM-EDS, 열분석 및 원소분석을 통하여 실리카의 표면이 유기물로 개질된 것을 확인할 수 있었다. 유기용매에서의 분산성 및 에폭시 수지와 복합화한 필름의 표면 조도 등을 평가한 결과, 에탄올을 용매로 사용하여 $50^{\circ}C$에서 TEOS를 24 h 가수분해하고, OTMS를 2 h 반응시킨 물질이 최적으로 나타났다. 이와 같은 표면 개질 실리카를 포함하는 복합체 필름의 산소 투과도를 측정한 결과, 개질 실리카를 포함하지 않는 필름에 비하여 산소 투과도가 12% 저하된 것을 확인할 수 있었다.