Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.5.317

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process  

Cheng, Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST))
Xu, Zhen-Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST))
Yang, Hu (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST))
Wei, Yong-Min (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST))
Publication Information
Membrane and Water Treatment / v.9, no.5, 2018 , pp. 317-325 More about this Journal
Abstract
Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.
Keywords
polyvinyl chloride; surface modification; silica sol; ultrafiltration membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang, L.F., Zhu, B.K., Zhu, L.P., Matsuyama, H. and Zhao, S.F. (2017), "Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media", J. Membr. Sci., 524, 235-244.   DOI
2 Guo, J.L., Li, Y., Xu, Z.L., Zhang, P.Y. and Yang, H. (2014), "Investigation of polyvinylidene fluoride membranes prepared by using surfactant OP-10 alone or with a second component, as additives, via the non-solvent-induced phase separation (NIPS) process", J. Macromol. Sci., Phys., 53(8), 1319-1334.   DOI
3 Harmer, M.A., Farneth, W. E. and Sun, Q. (1996), "High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst", J. Am. Chem. Soc., 118(33), 7708-7715.   DOI
4 Harmer, M.A., Sun, Q., Vega, A.J., Farneth, W.E., Heidekum, A. and Hoelderichb, W.F. (2000), "Nafion resin-silica nanocomposite solid acid catalysts. Microstructure-processingproperty correlations", Green Chem., 2(1), 7-14.   DOI
5 Hosseini, S.M., Madaeni, S.S., Zendehnam, A., Moghadassi, A.R., Khodabakhshi, A.R. and Sanaeepur, H. (2013), "Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification", J. Ind. Eng. Chem., 19(3), 854-862.   DOI
6 Irfan, M., Idris, A., Yusof, N.M., Khairuddin, N.F.M. and Akhmal, H. (2014), "Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes", J. Membr. Sci., 467(19), 73-84.   DOI
7 Karan, S., Jiang, Z.W. and Livingston, A.G. (2015), "Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation", Science, 348(6241), 1347-1351.   DOI
8 Kim, D.S., Kang, J.S., Kim, K.Y. and Lee, Y.M. (2002), "Surface modification of a poly(viny1 chloride) membrane by UV irradiation for reduction in sludge adsorption", Desalination, 146(1-3), 301-305.   DOI
9 Li, J.F., Xu, Z.L., Yang, H., Yu, L.Y. and Liu, M. (2009), "Effect of $TiO_2$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732.   DOI
10 Kong, X., Zhou, M.Y., Lin, C.E., Wang, J., Zhao, B., Wei, X.Z. and Zhu, B.K. (2016), "Polyamide/PVC based composite hollow fiber nanofiltration membranes: Effect of substrate on properties and performance", J. Membr. Sci., 505(2016), 231-240.   DOI
11 Marbelia, L., Bilad, M.R., Bertels, N., Laine, C. and Vankelecom, I.F. (2016), "Ribbed PVC-silica mixed matrix membranes for membrane bioreactors", J. Membr. Sci., 498, 315-323.   DOI
12 Mei, S., Xiao, C.F., Hu, X.Y. and Shu, W. (2011), "Hydrolysis modification of PVC/PAN/$SiO_2$ composite hollow fiber membrane", Desalination, 280(1-3), 378-383.   DOI
13 Meng, N., Wang, Z.Y., Low, Z.X., Zhang, Y.Q., Wang, H.T. and Zhang, X.W. (2015), "Impact of trace graphene oxide in coagulation bath on morphology and performance of polysulfone ultrafiltration membrane", Sep. Purif. Technol., 147, 364-371.   DOI
14 Rana, D., Mandal, B.M. and Bhattacharyya S.N. (1996b), "Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylate", Macromolecules, 29(5), 1579-1583.   DOI
15 Rabiee, H., Vatanpour, V., Farahani, M.H.D.A. and Zarrabi, H. (2015), "Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles", Sep. Purif. Technol., 156, 299-310.   DOI
16 Rana, D., Cho, K., Woo, T., Lee, B.H. and Choe, S. (1999), "Blends of ethylene 1-octene copolymer synthesized by Ziegler-Natta and metallocene catalysts. I. Thermal and mechanical properties", J. Appl. Polym. Sci., 74(5), 1169-1177.   DOI
17 Rana, D., Kim, H.L., Kwag, H. and Choe, S. (2000a), "Hybrid blends of similar ethylene 1-octene copolymers", Polymer, 41(19), 7067-7082.   DOI
18 Rana, D., Kim, H.L., Kwag, H., Rhee, J., Cho, K., Woo, T., Lee, B. H. and Choe, S. (2000b), "Blends of ethylene 1-octene copolymer synthesized by Ziegler-Natta and metallocene catalysts. II. Rheology and morphological behaviors", J. Appl. Polym. Sci., 76(13), 1950-1964.   DOI
19 Rana, D., Lee, C.H., Cho, K., Lee, B.H. and Choe, S. (1998), "Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefin", J. Appl. Polym. Sci., 69(12), 2441-2450.   DOI
20 Rana, D., Mandal, B.M. and Bhattacharyya, S.N. (1993), "Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-co-acrylonitrile) blends", Polymer, 34(7), 1454-1459.   DOI
21 Rana, D., Mandal, B.M. and Bhattacharyya, S.N. (1996a), "Analogue calorimetry of polymer blends: Poly(styrene-coacrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate)", Polymer, 37(12), 2439-2443.   DOI
22 Ulutan, S. and Balkӧse, D. (1996), "Diffusivity, solubility and permeability of water vapor in flexible PVC/silica composite membranes", J. Membr. Sci., 115(2), 217-224.   DOI
23 Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1-2), 284-294.   DOI
24 Velev, O.D., Jede, T.A., Lobo, R.F. and Lenhoff, A.M. (1997), "Porous silica via colloidal crystallization", Natural, 389(6650), 447-448.
25 Zhang, P.Y., Yang, H., Xu, Z.L., Wei, Y.M., Guo, J.L. and Chen, D.G. (2013), "Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)", J. Polym. Res., 20(2), 66-78.   DOI
26 Xu, H.P., Yu, Y.H., Lang, W.Z., Yan, X. and Guo, Y.J. (2015), "Hydrophilic modification of polyvinyl chloride hollow fiber membranes by silica with a weak in situ sol-gel method", RSC Adv., 5(18), 13733-13742.   DOI
27 Xu, J. and Xu, Z.L. (2002), "Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent", J. Membr. Sci., 208(1), 203-212.   DOI
28 Yang, S. and Liu, Z.Z. (2003), "Preparation and characterization of polyacrylonitrile ultrafiltration membranes", J. Membr. Sci., 222(1), 87-98.   DOI
29 Yu, L.Y., Xu, Z.L., Shen, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-$SiO_2$ composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337(1-2), 257-265.   DOI
30 Zhang, J., Wang, Z.W., Liu, M.X., Zhao, F.L. and Wu, Z.C. (2017), "In-situ modification of PVDF membrane during phaseinversion process using carbon nanosphere sol as coagulation bath for enhancing anti-fouling ability", J. Membr. Sci., 526, 272-280.   DOI
31 Zhu, A.P., Cai, A.Y., Zhou, W.D. and Shi, Z.H. (2008), "Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites", Appl. Surf. Sci., 254(13), 3745-3752.   DOI
32 Cui, Y., Yao, Z.K., Zheng, K., Du, S.Y., Zhu, B.K., Zhu, L.P. and Du, C.H. (2015), "Positively-charged nanofiltration membrane formed by quaternization and cross-linking of blend PVC/P(DMA-co-MMA) precursors", J. Membr. Sci., 492, 187-196.   DOI
33 An, Q.F., Qian, J.W., Sun, H.B., Wang, L.N., Zhang, L. and Chen, H.L. (2003), "Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures", J. Membr. Sci., 222(1-2), 113-122.   DOI
34 Behboudi, A., Jafarzadeh, Y. and Yegani, R. (2016), "Preparation and characterization of $TiO_2$ embedded PVC ultrafiltration membranes", Chem. Eng. Res. Des., 114, 96-107.   DOI
35 Bierbrauer, K., Lopez-Gonzalez, M., Riande, E. and Mijangos, C. (2010), "Gas transport in fluorothiophenyl modified PVC membranes", J. Membr. Sci., 362(1-2), 164-171.   DOI
36 Bilad, M.R., Marbelia, L., Laine, C. and Vankelecom, I.F. (2015), "A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane", J. Membr. Sci., 493(1), 19-27.   DOI
37 Chen, G.E., Liu, Y.J., Xu, Z.L., Tang, Y.J., Huang, H.H. and Sun, L. (2015), "Fabrication and characterization of a novel nanofiltration membrane by the interfacial polymerization of 1,4-diaminocyclohexane (DCH) and trimesoyl chloride (TMC)", RSC Adv., 5(51), 40742-40752.   DOI
38 Chen, G.E., Zhu, W.W., Xu, S.J., Xu, Z.L., Shen, Q., Sun, W.G., Wu, Q. and Zheng, X.P. (2016), "A PVDF/PVB composite UF membrane improved by F-127-wrapped fullerene for protein waste-water separation", RSC Adv., 6(87), 83510-83519.   DOI
39 Chi, L.N., Wang, J., Chu, T.S., Qian, Y.J., Yu, Z.J., Wu, D.Y., Zhang, Z.J., Jiang, Z. and Leckie, J.O. (2016), "Modeling and optimizing the performance of PVC/PVB ultrafiltration membranes using supervised learning approaches", RSC Adv., 6(33), 28038-28046.   DOI
40 Endo, K. (2002), "Synthesis and structure of poly(vinyl chloride)", Prog. Polym. Sci., 27(10), 2021-2054.   DOI
41 Fan, X.C., Su, Y.L., Zhao, X.T., Li, Y.F., Zhang, R.N., Zhao, J. J., Jiang, Z.Y., Zhu, J.A., Ma, Y.Y. and Liu, Y. (2014), "Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal", J. Membr. Sci., 464(6), 100-109.   DOI