Browse > Article
http://dx.doi.org/10.7473/EC.2017.52.4.242

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds  

Kim, Woong (Department of Polymer Science & Chemical Engineering, Pusan National University)
Ahn, Byungkyu (Department of Polymer Science & Chemical Engineering, Pusan National University)
Mun, Hyunsung (Department of Polymer Science & Chemical Engineering, Pusan National University)
Yu, Eunho (Department of Polymer Science & Chemical Engineering, Pusan National University)
Hwang, Kiwon (Department of Polymer Science & Chemical Engineering, Pusan National University)
Kim, Wonho (Department of Polymer Science & Chemical Engineering, Pusan National University)
Publication Information
Elastomers and Composites / v.52, no.4, 2017 , pp. 242-248 More about this Journal
Abstract
Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.
Keywords
silica filled compound; ESBR/silica wet masterbatch; SBR/BR blend; silica dispersion; latex/silica co-coagulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Shvarts, "Evaluation of rubber-solvent interaction", Rubber Chem. Technol., 31, 4 (1958).
2 P. Corish, "Fundamental studies of rubber blends", Rubber Chem. Technol., 40, 2 (1967).
3 A. Lafaurie, N. Azema, L. Ferry, and J. Lopez-Cuesta, "Stability parameters for mineral suspensions: Improving the dispersion of fillers in thermoplastics", Powder Technol., 192, 1 (2009).   DOI
4 R. Hagen, L. Salmen, and B. Stenberg, "Effects of the type of crosslink on viscoelastic properties of natural rubber", Journal of Polymer Science Part B: Polymer Physics, 34, 12 (1996).
5 G. Martin and W. Davey, "Rubber from latex coagulated with sulfuric acid", Rubber Chem. Technol., 8, 2 (1935).
6 L. A. Reuvekamp, J. Ten Brinke, P. Van Swaaij, and J. W. Noordermeer, "Effects of time and temperature on the reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber", Rubber Chem. Technol., 75, 2 (2002).
7 C. Peng, A. Gopfert, M. Drechsler, and V. Abetz, "Smart silica-rubber nanocomposites in virtue of hydrogen bonding interaction", Polym. Adv. Technol., 16, 11 (2005).   DOI
8 J. Y. Ko, K. Prakashan, and J. K. Kim, "New silane coupling agents for silica tire tread compounds", Journal of Elastomers & Plastics, 44, 6 (2012).
9 M. P. Cohen, C. A. Losey, R. B. Roennau, S. Futamura, T. F. E. Materne, J. O. Hunt, and G. A. L. Thise, U.S. Patent No. 5,914,364 (1999).
10 M. Mokhtari and D. J. Schipper, "Existence of a tribo-modified surface layer of BR/S-SBR elastomers reinforced with silica or carbon black", Tribol. Int., 96 (2016).
11 T. Xu, Z. Jia, S. Wang, Y. Chen, Y. Luo, D. Jia, and Z. Peng, "Self-crosslinkable epoxidized natural rubber-silica hybrids", J. Appl. Polym. Sci., 134, 14 (2017).
12 H. Luginsland, J. Frohlich, and A. Wehmeier, "Influence of different silanes on the reinforcement of silica-filled rubber compounds", Rubber Chem. Technol., 75, 4 (2002).
13 S. Choi, "Influence of the silica content on rheological behaviour and cure characteristics of silica-filled styrenebutadiene rubber compounds", Polym. Int., 50, 5 (2001).   DOI
14 Y. Wang, L. Liao, J. Zhong, D. He, K. Xu, C. Yang, Y. Luo, and Z. Peng, "The behavior of natural rubber-epoxidized natural rubber-silica composites based on wet masterbatch technique", J. Appl. Polym. Sci., 133, 26 (2016).
15 K. Kim, J. Lee, B. Choi, B. Seo, G. Kwag, H. Paik, and W. Kim, "Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: Dispersion of silica particles and dynamic mechanical properties", Composite Interfaces, 21, 8 (2014).
16 P. J. Wallen, G. C. Bowman, H. A. Colvin, C. J. Hardiman, and J. E. R. Reyna, U.S. Patent No. 8,357,733 (2013).
17 J. W. Lightsey, D. J. Kneiling, and J. M. Long, "Silica wet masterbatch: A new process for pre-dispersion of silica in emulsion polymers", Rubber World, 218, 3 (1998).
18 C. Yin, Q. Zhang, and D. Gong, "Preparation and properties of silica/styrene butadiene rubber masterbatches by latex cocoagulating technology", Polymer Composites, 35, 6 (2014).
19 Koski. A, U.S. Patent No. 6,420,456. (2002).
20 Y. Gui, J. Zheng, X. Ye, D. Han, M. Xi, and L. Zhang, "Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method", Composites Part B: Engineering, 85 (2016).
21 Y. Wang, Y. Wu, W. Li, and L. Zhang, "Influence of filler type on wet skid resistance of SSBR/BR composites: Effects from roughness and micro-hardness of rubber surface", Appl. Surf. Sci., 257, 6 (2011).
22 P. Corish, "Fundamental studies of rubber blends", Rubber Chem. Technol., 40, 2 (1967).
23 M. Inai, S. Aizawa, and M. Ito, "Phase control of BR/SBR blends by silica particles", e-Journal of Soft Materials, 3 (2007).
24 I. A. Amraee, A. Katbab, and S. Aghafarajollah, "Qualitative and quantitative analysis of SBR/BR blends by thermogravimetric analysis", Rubber Chem. Technol., 69, 1 (1996).   DOI
25 N. Yoshimura and K. Fujimoto, "Structure of vulcanized and unvulcanized SBR/BR blends", Rubber Chem. Technol., 42, 4 (1969).
26 C. Preti, L. Tassi, and G. Tosi, "Resolution of mixtures of organic acids by conductometric titrations in 2-methoxyethanol," Anal. Chem., 54, 4 (1982).   DOI
27 L. Best and S. Morrell, "Effect of sulfuric acid coagulation on properties of natural rubber", Rubber Chem. Technol., 28, 4 (1955).
28 A. Ansarifar, R. Nijhawan, T. Nanapoolsin, and M. Song, "Reinforcing effect of silica and silane fillers on the properties of some natural rubber vulcanizates", Rubber Chem. Technol., 76, 5 (2003).
29 S. Lim, S. Lee, N. Lee, B. K. Ahn, N. Park, and W. Kim, "Effect of 1, 3-diphenyl-guanidine (DPG) mixing step on the properties of SSBR-silica compounds", Elast. Compo., 51, 2 (2016).
30 A. Ansarifar, L. Wang, R. Ellis, S. Kirtley, and N. Riyazuddin, "Enhancing the mechanical properties of styrene-butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber", J. Appl. Polym. Sci., 105, 2 (2007).   DOI
31 S. A. Glikman and E. P. Korchagina, "The Coagulation Mechanism of Butadiene-Styrene Latex", Rubber Chem. Technol., 32, 2 (1959).
32 F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, "Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems", Polymer, 42, 23 (2001).
33 R. Rauline, EP Patent 0501227A1 (1992).
34 Paul H. Sandstrom, U.S. Patent No. 5,336,730 (1994).