• 제목/요약/키워드: Modified silica

검색결과 258건 처리시간 0.033초

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi;Diwakar Tiwari;Seung Mok Lee
    • 공업화학
    • /
    • 제34권2호
    • /
    • pp.199-205
    • /
    • 2023
  • Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

재생된 옥사이드 CMP 슬러리의 물리적, 화학적 특징에 대한 연구 (Physical and Chemical Characterization of Recycled Oxide CMP Slurry)

  • 김명식;박진구;이관호
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.235-239
    • /
    • 2001
  • In recent years, as Chemical Mechanical Planarization(CMP) has been routinely utilized in integrated circuit(IC) fabrication, the consumption of slurry, main consumable in a CMP process, is greatly increased. Thus the reprocess of CMP slurries has been actively considered in the industry to reduce cost-of-consumable (COC). The main purpose of this study was to recycle the used oxide slurry using filters as a new method. As a result, Ultra Fine(UF) Filter could distinguish silica from the used oxide slurry and Reverse Osmosis(RO) Filter could distinguish Deionized(DI) Water and chemistry from chemistry solution. The tetraethylorthosilicate removal rate was almost the same as the number of recycle polishing was increased, when it was modified by slightly adding new SS-12 slurry. The microscratch didnt found as the number of recycle polishing was increased.

  • PDF

Inorganic nanomaterial-based biocatalysts

  • Lee, Soo-Youn;Lee, Ji-Ho;Chang, Jeong-Ho;Lee, Jin-Hyung
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.77-86
    • /
    • 2011
  • Over the years, nanostructures have been developed to enable to support enzyme usability to obtain highly selective and efficient biocatalysts for catalyzing processes under various conditions. This review summarizes recent developments in the nanostructures for enzyme supporters, typically those formed with various inorganic materials. To improve enzyme attachment, the surface of nanomaterials is properly modified to express specific functional groups. Various materials and nanostructures can be applied to improve both enzyme activity and stability. The merits of the incorporation of enzymes in inorganic nanomaterials and unprecedented opportunities for enhanced enzyme properties are discussed. Finally, the limitations encountered with nanomaterial-based enzyme immobilization are discussed together with the future prospects of such systems.

고압중전기기용 절연신소재 EMNC와 EMNSC의 특성연구 (Properties of EMNC and EMNSC for Insulation New Material as Apply to High Voltage Heavy Electric Machine)

  • 박재준
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1454-1460
    • /
    • 2012
  • In order to develop an new electric insulation material for heavy electric equipments, epoxy/micro/nano composite (EMNC) was prepared by mixing micro-silica with nano layered silicate, where the nano layered silicate was synthesized by our electric field dispersion method, EMNSC was prepared by treating the EMNC with a silane coupling agent. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanicla properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. All properties of EMNSC were modified by treating EMNC with silane coupling agent and it was confirmed that our new developed composites could be used in the heavy electric equipments.

Boron Trifluoride Etherate on Silica-A Modified Lewis Acid Reagent (VII). Antitumor Activity of Cannabigerol Against Human Oral Epitheloid Carcinoma Cells

  • Baek, Seung-Hwa;Kim, Young-Ok;Kwag, Jung-Suk;Choi, Kyw-Eun;Jung, Woo-Young;Han, Du-Seok
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.353-356
    • /
    • 1998
  • Geraniol (1), olivetol (2), cannabinoids (3 and 4) and 5-fluorouracil (5) were tested for their growth inhibitory effects against human oral epitheloid carcinoma cell lines (KB) and NIH 3T3 fibrobalsts using two different 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and sulforhodamine B protein (SRB) assay. Cannabigerol (3) exhibited the highest growth-inhibitory activity against the cancer cell lines.

  • PDF

구간해석방법을 통한 새로운 비구형 입자성장해석 모델 (A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method)

  • 정재인;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF

Electrical Properties of Silicone Rubber Filled with Surface Treated Alumina Trihydrate

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.134-140
    • /
    • 2006
  • The effect of surface treatment of fillers on the mechanical, electrical properties, and tracking performance of silicone rubber insulators have been investigated. For base polymer, $\alpha,\;\omega$) vinyl poly(dimethyl-methylphenyl) siloxane(VPMPS) containing dimethyl siloxane and methylphenyl siloxane was prepared by the equilibrium polymerization. High voltage silicone rubber composites(HVSRC) were prepared from VPMPS, nano-silica, and alumina trihydrate (ATH) modified by various coupling agents. Bound rubber of uncured silicone rubber, cross-linking density of the vulcanizate as well as the mechanical, electrical properties, and tracking performance were measured.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

단열성능향상 재료를 사용한 콘크리트의 열적 특성에 관한 연구 (Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material)

  • 박영신;김정호;강연우;염광수;전현규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.227-228
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using insulation performance improve material.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • 마이크로전자및패키징학회지
    • /
    • 제9권4호
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF