• Title/Summary/Keyword: Modified K-Means

Search Result 474, Processing Time 0.026 seconds

Zone Clustering Using a Genetic Algorithm and K-Means (유전자 알고리듬과 K-평균법을 이용한 지역 분할)

  • 임동순;오현승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • The zone clustering problem arising from several area such as deciding the optimal location of ambient measuring stations is to devide the 2-dimensional area into several sub areas in which included individual zone shows simimlar properties. In general, the optimal solution of this problem is very hard to obtain. Therefore, instead of finding an optimal solution, the generation of near optimal solution within the limited time is more meaningful. In this study, the combination of a genetic algorithm and the modified k-means method is used to obtain the near optimal solution. To exploit the genetic algorithm effectively, a representation of chromsomes and appropriate genetic operators are proposed. The k-means method which is originally devised to solve the object clustering problem is modified to improve the solutions obtained from the genetic algorithm. The experiment shows that the proposed method generates the near optimal solution efficiently.

  • PDF

Extensions of X-means with Efficient Learning the Number of Clusters (X-means 확장을 통한 효율적인 집단 개수의 결정)

  • Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.772-780
    • /
    • 2008
  • K-means is one of the simplest unsupervised learning algorithms that solve the clustering problem. However K-means suffers the basic shortcoming: the number of clusters k has to be known in advance. In this paper, we propose extensions of X-means, which can estimate the number of clusters using Bayesian information criterion(BIC). We introduce two different versions of algorithm: modified X-means(MX-means) and generalized X-means(GX-means), which employ one full covariance matrix for one cluster and so can estimate the number of clusters efficiently without severe over-fitting which X-means suffers due to its spherical cluster assumption. The algorithms start with one cluster and try to split a cluster iteratively to maximize the BIC score. The former uses K-means algorithm to find a set of optimal clusters with current k, which makes it simple and fast. However it generates wrongly estimated centers when the clusters are overlapped. The latter uses EM algorithm to estimate the parameters and generates more stable clusters even when the clusters are overlapped. Experiments with synthetic data show that the purposed methods can provide a robust estimate of the number of clusters and cluster parameters compared to other existing top-down algorithms.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

Speaker-Independent Isolated Word Recognition Using A Modified ISODATA Method (Modified ISODATA 집단화방법을 이용한 불특정화자 단독어 인식)

  • 황우근
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.66-69
    • /
    • 1987
  • 본 논문은 불특정화자의 한국어 단독음인식에 관한 연구로써 새로운 집단화 방법인 Modified-ISODATA 집단화방법을 제안한다.본 알고리즘의 목적은 종래의 ISODATA 알고리즘에서 외부 고립점 처리 및 분리과정을 단순화 하고, Lumping 과정을 제거하여 정확하고도 자동화된 집단의 중심점을 찾는 것이다. 본 알고리즘을 적용한 결과, 10명의 남성 화자와 4명의 여성 화자가 발음한 11개의 ltnt자음에 대하여, 최근에 발표된 Modified K-means 방법보다 좋은 인식율을 나타내어, 보다 정확한 집단의 중심점을 찾아 내었음을 입증해보였다.

  • PDF

ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS

  • Ren, Mei-Ying;Zeng, Xiao-Ming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1145-1156
    • /
    • 2013
  • In this paper, a kind of modified $q$-Bernstein-Schurer operators is introduced. The Korovkin type statistical approximation property of these operators is investigated. Then the rates of statistical convergence of these operators are also studied by means of modulus of continuity and the help of functions of the Lipschitz class. Furthermore, a Voronovskaja type result for these operators is given.

Modified K-means algorithm (수정된 K-means 알고리즘)

  • Kim Hyungcheol;Cho CheHwang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.115-118
    • /
    • 1999
  • One of the typical methods to design a codebook is K-means algorithm. This algorithm has the drawbacks that converges to a locally optimal codebook and its performance is mainly decided by an initial codebook. D. Lee's method is almost same as the K-means algorithm except for a modification of a distance value. Those methods have a fixed distance value during all iterations. After many iterations. because the distance between new codevectors and old codevectors is much shorter than the distance in the early stage of iterations, the new codevectors are not affected by distance value. But new codevectors decided in the early stage of learning iterations are much affected by distance value. Therefore it is not appropriate to fix the distance value during all iterations. In this paper, we propose a new algorithm using each different distance value between codevectors for a limited iterations in the early stage of learning iteration. In the experiment, the result show that the proposed method can design better codebooks than the conventional K-means algorithms.

  • PDF

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Improved MKM Algorithm for Vector Quantizer Design (VQ 코드북 디자인을 위한 개선된 Modified K-Means 알고리듬)

  • 백성준;김종득;배명진;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.57-60
    • /
    • 1998
  • 본 논문에서는 MKM(Modified K-Means) 알고리듬의 성능을 개선하기 위해 새로운 학습알고리듬을 제안한다. MKM 알고리듬에서 새로운 코드워드는 이전 코드워드와 새로 얻 은 중심점을 이은 직선 상의 임의적으로 선택된다. 따라서 MKM 알고리듬은 통계적 이완 방법의 코드북 교란 알고리듬으로 이해될 수 있다. MKM 알고리듬을 통계적 이완 알고리듬 과 비교해보면 도입되는 교란의 양이 상대적으로 적고 그 교란 자체도 임의적이지 않다는 걸 알 수 있다. 따라서 MKM 알고리듬에 도입되는 교란의 양을 보다 크고 임의적이게 하면 MKM 알고리듬이 국소 최적화에 빠질 가능성이 줄어들 것이다. 따라서 본 논문에서는 MKM 알고리듬의 코드북 갱신과정을 변화시킨 새로운 알고리듬을 제안하였으며, 화상 데이 터와 음성 데이터를 이용하여 실험한 결과 제안된 알고리듬이 MKM 알고리듬보다 우수한 성능을 보인다는 걸 확인할 수 있다.

  • PDF

Comparison of Calibrations using Modified SWAT Auto-calibration Tool with Various Efficiency Criteria (다양한 검증 지수를 이용한 SWAT 자동 보정 비교 평가)

  • Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.19-19
    • /
    • 2011
  • The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.

  • PDF