• Title/Summary/Keyword: Modeling and Prediction

Search Result 1,889, Processing Time 0.029 seconds

1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature (역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측)

  • Jina Hur;Eun-Soon Im;Subin Ha;Yong-Seok Kim;Eung-Sup Kim;Joonlee Lee;Sera Jo;Kyo-Moon Shim;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • This study predicted rice harvest date in South Korea using 11-year (2012-2022) hindcasts based on dynamically downscaled 2m air temperature at subseasonal (1-month lead) timescale. To obtain high (5 km) resolution meteorological information over South Korea, global prediction obtained from the NOAA Climate Forecast System (CFSv2) is dynamically downscaled using the Weather Research and Forecasting (WRF) double-nested modeling system. To estimate rice harvest date, the growing degree days (GDD) is used, which accumulated the daily temperature from the seeding date (1 Jan.) to the reference temperature (1400℃ + 55 days) for harvest. In terms of the maximum (minimum) temperatures, the hindcasts tends to have a cold bias of about 1. 2℃ (0. 1℃) for the rice growth period (May to October) compared to the observation. The harvest date derived from hindcasts (DOY 289) well simulates one from observation (DOY 280), despite a margin of 9 days. The study shows the possibility of obtaining the detailed predictive information for rice harvest date over South Korea based on the dynamical downscaling method.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Nonlinear Time Series Prediction Modeling by Weighted Average Defuzzification Based on NEWFM (NEWFM 기반 가중평균 역퍼지화에 의한 비선형 시계열 예측 모델링)

  • Chai, Soo-Han;Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.563-568
    • /
    • 2007
  • This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.

Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju (나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Jeong, Choen-Lee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.995-1007
    • /
    • 2008
  • Studies on modeling the rainfall-runoff relationship which shows nonlinear trend strongly use artificial neural networks theory not only for the prediction but also for the characteristics analysis of the data used by pattern classification. For the pattern classification, the results from Self-Organizing Map (SOM) mention that the map size and array for the SOM training have significantly influenced on the SOM performance. Since there is no deterministic method or theoretical equation to determine the number of rows and columns for the map size, hexagonal array is generally used for the map array. Therefore, this study present a determination of the optimized map structure for the rainfall-runoff analysis in Naju station considering the map size and array simultaneously which can represent the classified characterization of rainfall-runoff relationship. The result showed that the map size of 20$\times$16 hexagonal array with 8-clustered patterns was selected as an appropriate map structure for rainfall-runoff analysis in Naju station.

Classification Modeling for Predicting Medical Subjects using Patients' Subjective Symptom Text (환자의 주관적 증상 텍스트에 대한 진료과목 분류 모델 구축)

  • Lee, Seohee;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • In the field of medical artificial intelligence, there have been a lot of researches on disease prediction and classification algorithms that can help doctors judge, but relatively less interested in artificial intelligence that can help medical consumers acquire and judge information. The fact that more than 150,000 questions have been asked about which hospital to go over the past year in NAVER portal will be a testament to the need to provide medical information suitable for medical consumers. Therefore, in this study, we wanted to establish a classification model that classifies 8 medical subjects for symptom text directly described by patients which was collected from NAVER portal to help consumers choose appropriate medical subjects for their symptoms. In order to ensure the validity of the data involving patients' subject matter, we conducted similarity measurements between objective symptom text (typical symptoms by medical subjects organized by the Seoul Emergency Medical Information Center) and subjective symptoms (NAVER data). Similarity measurements demonstrated that if the two texts were symptoms of the same medical subject, they had relatively higher similarity than symptomatic texts from different medical subjects. Following the above procedure, the classification model was constructed using a ridge regression model for subjective symptom text that obtained validity, resulting in an accuracy of 0.73.

A Study on the War Simulation and Prediction Using Bayesian Inference (베이지안 추론을 이용한 전쟁 시뮬레이션과 예측 연구)

  • Lee, Seung-Lyong;Yoo, Byung Joo;Youn, Sangyoun;Bang, Sang-Ho;Jung, Jae-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.77-86
    • /
    • 2021
  • A method of constructing a war simulation based on Bayesian Inference was proposed as a method of constructing heterogeneous historical war data obtained with a time difference into a single model. A method of applying a linear regression model can be considered as a method of predicting future battles by analyzing historical war results. However it is not appropriate for two heterogeneous types of historical data that reflect changes in the battlefield environment due to different times to be suitable as a single linear regression model and violation of the model's assumptions. To resolve these problems a Bayesian inference method was proposed to obtain a post-distribution by assuming the data from the previous era as a non-informative prior distribution and to infer the final posterior distribution by using it as a prior distribution to analyze the data obtained from the next era. Another advantage of the Bayesian inference method is that the results sampled by the Markov Chain Monte Carlo method can be used to infer posterior distribution or posterior predictive distribution reflecting uncertainty. In this way, it has the advantage of not only being able to utilize a variety of information rather than analyzing it with a classical linear regression model, but also continuing to update the model by reflecting additional data obtained in the future.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

A Comparative Study on the Improvement of Curriculum in the Junior College for the Industrial Design Major (2년제 대학 산업디자인전공의 교육과정 개선방안에 관한 비교연구)

  • 강사임
    • Archives of design research
    • /
    • v.13 no.1
    • /
    • pp.209-218
    • /
    • 2000
  • The purpose of this study was to improve the curriculum for industrial design department in the junior colleges. In order to achieve the purpose, two methodologies were carried out. First is job analysis of the industrial designers who have worked in the small & medium manufacturing companies, second is survey for the opinions of professors in the junior colleges. Some results were as follows: 1. The period of junior college for industrial designers is 2 years according to present. But selectively 1 year of advanced course can be established. 2. The practice subjects same as computational formative techniques needed to product development have to be increased. In addition kinds of selection subjects same as foreign language, manufacturing process, new product information and consumer behavior investigation have to be extended. 3. The next subjects need to adjust the title, contents and hours. (1) The need of 3.D related subjects same as computer modeling, computer rendering, 3.D modeling was high. The use of computer is required to design presentation subjects. (2)The need of advertising and sale related subjects same as printing, merchandise, package, typography, photography was low, the need of presentation techniques of new product development was high. (3) The need of field practice, special lecture on practice and reading original texts related subjects was same as at present, but these are not attached importance to form. As the designers feel keenly the necessity of using foreign language, the need of language subject was high.

  • PDF