• 제목/요약/키워드: Model-Based Fault Diagnosis

검색결과 220건 처리시간 0.025초

PCA와 LDA에 기반을 둔 융합알고리즘에 의한 유도전동기의 고장진단 (Fault Diagnosis of Induction Motor by Fusion Algorithm based on PCA and IDA)

  • 전병석;이대종;이상혁;유정용;전명근
    • 조명전기설비학회논문지
    • /
    • 제19권2호
    • /
    • pp.152-159
    • /
    • 2005
  • 본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 PCA와 LDA에 기반을 둔 융합모델을 이용한 진단 알고리즘을 제안하고자 한다. 실험에 의해 측정된 전류 값을 PCA와 LDA을 이용하여 특징벡터를 산출한 후 검증데이터를 이용하여 각각의 매칭 값을 산출한다. 진단단계는 PCA와 LDA에 의해 각각 산출된 두 개의 매칭 값을 확률모델에 의해 융합한 후 최종적으로 검증하는 구조로 되어있다. 제안된 진단 알고리즘의 경우 PCA와 LDA의 장점만을 부각시킴으로써 노이즈가 존재하는 환경하에서도 우수한 성능을 보인다. 제안된 방법의 타당성을 보이기 위해 노이즈가 있는 다양한 조건하에서 실험한 결과 기존의 PCA또는 LDA만을 이용한 경우보다 우수한 결과를 나타냈다.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

공작기계 상태감시용 진단파라미터 전문가 시스템 (An Expert System Using Diagnostic Parameters for Machine tool Condition Monitioring)

  • 신동수;정성종
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.112-122
    • /
    • 1996
  • In order to monitior machine tool condition and diagnose alarm states due to electrical and mechanical faults, and expert system using diagnostic parameters of NC machine tools was developed. A model-based knowledge base was constructed via searching and comparing procedures of diagnostic parameters and state parameters of the machine tool. Diagnostic monitoring results generate through a successive type inference engine were graphically displayed on the screen of the console. The validity and reliability of the expert system was rcrified on a vertical machining center equipped with FANUC OMC through a series of experiments.

  • PDF

진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델 (Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data)

  • 김승일;노유정;강영진;박선화;안병하
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.25-33
    • /
    • 2021
  • 머신러닝 기법의 발달과 함께 기계에서 발생하는 다양한 종류(진동, 온도, 유량 등)의 데이터를 활용하여 기계의 상태를 진단하고 이상 탐지 및 비정상 분류 연구도 활발히 진행되고 있다. 특히 진동 데이터를 활용한 회전 기계의 상태 진단은 전통적인 기계 상태 모니터링 분야로 오랜 기간 동안 연구가 진행되었고, 연구 방법 또한 매우 다양하다. 본 연구에서는 가정용 에어컨에 사용되는 로터리 압축기에 가속도계를 직접 설치하여 진동 데이터를 수집하는 실험을 진행하였다. 데이터 부족 문제를 해결하기 위해 데이터 분할을 수행하였으며, 시간 영역에서의 진동 데이터로부터 통계적, 물리적 특징들을 추출한 후, Chi-square 검증을 통해 고장 분류 모델의 주요 특징을 추출하였다. SVM(Support Vector Machine) 모델은 압축기의 정상 혹은 이상 유무를 분류하기 위해 개발되었으며, 파라미터 최적화를 통해 분류 정확도를 개선하였다.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

다중 상황공간을 이용한 다중 오류의 고장 진단 (Diagnosing Multiple Faults using Multiple Context Spaces)

  • 이계성;권경희
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.137-148
    • /
    • 1997
  • 고장진단 문제는 지식기반 시스템를 이용해 해결하려는 시도가 많이 있어왔다. 그러나 대부분의 방식은 휴리스틱 또는 모델기반 방식으로 단일 오류에 대한 문제에 많은 노력이 이루어져 왔다. 단일 오류에 대한 고장진단문제 해결방식을 다중 오류진 단으로 확대할 때 발생하는 지수적인 계산비용은 피할 수 없는 문제점으로 지적되어 왔다. 이 논문에서는 시스템 구성에 따라 블록으로 구분하면 전체 탐색 영역을 국소 화할 수 있다는 점에 착안하여 다중 오류 진단을 위한 효율적인 알고리즘을 제안한 다. 이 알고리즘의 기본 원리는 오류진단을 위한 출력값 측정 지점에 따라 전체 회로 를 블록으로 나누고 다중오류에 대한 발생원인의 지수적 증가를 줄임으로 효율화 시 킬 수 있다. 각각의 블럭으로부터 발생하는 오류에 대해 결합하는 규칙을 개발하고 이를 통해 상호 논리적인 모순이 없는 최소 오류원인 집합을 구한다.

  • PDF

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

전자장비 고장진단 질의응답을 위한 인과관계 정의 및 추출 (Definition and Extraction of Causal Relations for Question-Answering on Fault-Diagnosis of Electronic Devices)

  • 이신목;신지애
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.335-346
    • /
    • 2008
  • 온톨로지의 인과관계는 특정 응용을 위한 추론에서 중요한 역할을 하므로, 인과관계는 응용에서 쓰이는 추론의 형태에 근거하여 정의되어야 한다. 본 논문에서는, 전자장비의 고장진단 질의응답을 위한 온톨로지에서의 인과관계를 정의하고 추출하는 모델을 제시한다. 질의응답의 패턴을 분석하여 인과범주를 정의하고, 질의응답에서 나타나는 개념들 사이의 관계들 중 인과범주에 속하는 경우를 인과관계로 정의한다. 인과관계 인스턴스는 응용분야의 정의문으로부터 어휘 패턴을 이용하여 추출되고 시소러스 정보를 이용하여 점진적으로 확장된다. 분야 전문가들의 평가 결과, 본 모델은 관계분류에 있어서 92.3%의 평균 정확률과 추출 단계의 인과관계 인식에 있어서 80.7%의 정확률을 보인다.

진동 신호 분석을 통한 전동 모터 상태 검출 (Condition Monitoring of Induction Motor with Vibration Signal Analysis)

  • 슈화;이의동;정길도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.243-245
    • /
    • 2005
  • Condition monitoring is desirable for increasing machinery availability, reducing consequential damage, and improving operational efficiency. In this paper, a model-based method using neural network modeling of induction noter in vibration spectra is proposed for machine fault detection and diagnosis. The short-time Fourier transform (STFT) is used to process the quasi-steady vibration signals to continuous spectra so that the neural network model can be trained with vibration spectra. And the faults are detected from changes in the expectation of vibration spectra modeling error. The effectiveness of the proposed method is demonstrated through experimental results.

  • PDF