of A M'-H H M

2 o

2B EAE AN A2 L o g8 sl @B AEs) 2ol glojsivh e PR a2 Fa
28 Ee X7 o2 gy ofd g A 2L eFo] o] Tl g} BUOF] B TAIY
A AATAE OF LFAde R U o TS AFHQ AL AT & e TAPLE AEE
AIRTH o] R AME A2 T4 wek 2202 7EIAY A P4 GG LY £ A Hel Pt
Btel 2R AVE A BE4AY TR FE AQU) o] FRANES /R Yol LFAVL AT 29
o &3 AHel oo} AA HN2E §Io2 ro] dFefd OE HA4dA A5F 012 Yo B
B £ Aok A7l 2Eo2RE YA 2 Fol fal 2ae FHL AL 018 58 4E =) F
A 2ol gl A2 074U APL 7H

Diagnosing Multiple Faults using Multiple Context Spaces
Gyesung Lee ! - Kyung Hee Kwon 17

ABSTRACT

Diagnostic problem solving is a major application area of ‘knowledgc-bascd system research. However, most of
the current approaches, both heuristic and model-based, are designed to identify single faults, and do mot
generalize gasily to multiple fault diagnosis without exhibiting exponential behavior in the amount of compu-
tation required. In this paper, we employ a decomposition approach based on system configuration to generate
an efficient algorithm for muitiple fault diagnosis. The basic idea of the algorithm is to reduce the inherent com-
binatorial explosion that occurs in generating multiple faults by partitioning the circuit into groups that corre-
spond 1o cutput measurement points. Rules are developed for combining candidates from individual groﬁps, and
forming consistent sets of minimal candidates.

1. Introduction

The design of diagnostic systems is a major appli-
cation area of knowledge-based system research. A
number of successful diagnostic systems have been
developed for medical, industrial, and engineecring
applications. The complexity of present day electronic
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and digital circuits and their use in large numbers has
accelerated the need for automated fault diagnosis
systems that are efficient and effective in real world
applications. Most current approaches, both heuristic
and model-based, are designed to identify single faults,
and do not generalize easily to multiple fault diagnosis
without exhibiting exponential behavior. An excellent
introduction to different Al techniques used for diag-
nosis associational (e.g., MYCINI2]), functional (e.g.,
[9] and structural (e.g., [3]) is presented by [12].



138 SHEEEMNTIES =ZX| M4 X 13567.1)

Recently a number of researchers ([3], [4], [10], and
[14]) have proposed diagnosis systems based on model-
based reasoning techniques as opposed fo associational
pattern matching techniques that link symptoms to
potential causes [2]. They all view diagnosis as the
process to determine the fault or faults responsible for
an observed set of symptoms. Analysis by model-
based reasoning techniques relies on generating behavior
of a system from its structure and functionality
derived from first principles.

Model-based approaches result in more general and
robust techniques for diagnosis. Associational methods
rely on the experience of human experis (source of
associational knowledge), and, therefore, are mostly
applicable in previously encountered situations (whereas
model-based techniques are applicable to novel fault
diagnosis). However, the methods proposed by {3]
and {10] are effective only in single fault diagnosis.
Davis represents the behavioral knowledge of the
device as a constraint network, and dependency
relations are established between output measurements,
input data and components that influence the output
measurement (pathways of causal interaction). A con-
straint suspension method is then applied to narrow
down the set of candidates by relaxing constraints on
individual component behavior (i.e., relaxing the con-
straint that describes correct behavior of a component),
and propagating its effects to ensure that this relax-
ation does not contradict other measurements (to
ensure global consistency). Note that this technique
does not require the use of fault models, however, to
apply it to multiple fault diagnosis would require
applying constraint suspension to all possible combi-
nations of components in a sequential manner. Simi-
larly, Genesereth’s diagnosis scheme uses design kno-
wledge to identify a suspect set. Design knowledge
corresponds to the structural and behavioral knowl-
edge of devices. The scheme then applies a traditional
test peneration method to generate the test set used to
confirm and disconfirm the candidate components in

the suspect set.

De Kleer and Williams [7] extended Davis” work [3]
and developed GDE (Generalized Diagnosis Engine),
a general-purpose model-based approach for multiple
fault diagnosis. They start off with a device model,

which includes

¢ The device schematics-components that make up
the circuit and their interconnections, and

* A behavior generating model-given a set of input
values, the model can compute the correct (or
expected) values at the output and other points at

which measurements can be made.

Their diagnostic scheme, based on a two step
approach :conflict recognition and candidate gener-
ation, is initiated when discrepancies are detected at
measurement points. An assumption-based (ATMS)
reasoning technique keeps track of multiple sets of
consistent and mconsistent environments (possible faulty
component sets). Rather than generate all possible
candidates, their algorithm is made more efficient by
generating only minimal sets of faulty caﬁdidates.
They couple this mechanism with a probabilistic
information theoretic scheme that defines an efficient
probing strategy to help refine the candidate sets
generated by the first step. [14] also presents a similar
technique, but develops a more formal model based
on a finite set of faults, symptoms, and causal
connections between faults and symptoms. Recently
there have been attempts by [15] and [6] to integrale
fault models into model based diagnosis to further
refine the candidate sets derived from the above
analysis.

The primary motivation of this paper is thal in real
world circuit diagnosis, which involves MSI, LSI, and
VLSI circuits, the complexity of the system being
diagnosed is many orders of magnitude greater than -
the examples presented in above papers. It is not clear
as to how well these algorithms would scale up when
the complexity of the circuits to be diagnosed

increases greatly in terms of the number of components



and the complexity of the interconnections used. As a
first step towards achieving better bounds on the
computational complexity, we propose a new algorithm
that is conceptually simpler than the [7] algorithm,
and probably computationally less complex.

Our approach starts by decomposing the circuit [§]
being investigated into groups of smaller number of
components based on output measurement points.
The idea is to prevent inherent combinatorial explosion
that occurs when generating multiple faults. The
implementation requires that a circuit be defined as a
network of connected components (the components
are the nodes of the network), the correct behavior of
all individual components are known, and, therefore,
correct behavior can be computed at all measurement
points using the model. Like the [7] approach, an
ATMS [5] is used for maintaining the partial set of
minimal ¢andidates and dependency lists, so that global
consistency can be ensured as partitions are cormbined.

Formation of the set of minimal candidates is initiated ]

from a single partition with a faulty output measure-
ment, and then sequentially combined with neighboring
partitions to obtain globally consistent candidate sets.

A point to note is that though the paper was
molivated by digital circuoits, the multi-fault diagnostic
technique presented can be applied to any system
or device provided: (i) they can be represented as a
system of interconnected components, and (ii) given
that behaviors of individual components- are known,
the network model can be used to completely derive
the expected behavior of the system for different sets
of input values,

Section 2 outlines the basic ideas employed by the
multiple fault diagnosis algorithm. Section 3 presents
the algorithm for candidate generation, and Section 4
talks about some implementation issues. Section 5
discusses a complete example that demonstrates the
working of the algorithm. Section 6 presents conclusions,
and ideas for future extensions of this approach to
diagnosis,
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2. Diagnosing multiple faults

de Kleer and Williams define diagnostic reasoning |
as “a means of assigning credit or blame to parts of a
model based on observed behavioral discrepancies”
[7]. Diagnosis involves two primary aspects: (i) identi-
fying model-artifact differences, and (ii) using these
differences to identify possible sets of faulty components
that are consistent with the measurements made. In
reality, diagnosis includes a very important third
component : (jii) determining a sequence of evidence-
gathering tests that help refine the results of step (ii).
This third step aids in narrowing down possible faulty
candidates till ultimately the actual faulty components
can be identified.

This paper assumes that a schematic of the system
being diagnosed is available in the form of actual
components that make up the system and how they
are interconnected, It is also assumed that a complete
device model is available, therefore, model-artifact
differences can be easily identified by comparing
observed measurements to expected measurements
computed from the model. These differences are
recorded as symptoms. Furthermore, it is assumed
that the device or system being diagnosed has mul-
tiple output ports, and all discrepancies at the output
ports have been recorded, before step (i) of the diag-
nostic process is initiated.

A traditional (or manual) diagnostic scheme would
likely combine steps (i) and (i) of the diagnostic
process, however, we assume an antomated diagnosis
scenario where additional test points are not casily
accessible. For example, consider an automated diag-
nostic system for PCB’s (Printed Circuit Boards).
Measurements at the I/O pins can be easily performed,
but probing. measurements at arbitrary points of the
board may be much harder to accomplish by an -
automated system. Performing additional tests or
making further measurements is much more expensive
than performing the set of computations in step (ii) in
its entirety. Therefore, the algorithm we develop
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concentrales on determining all possible minimal
faully candidates. Like the de Kleer and Williams
approach [7] further lesting can be initiated based on
the candidate sets extracted in step (i), however, we
do nol address that phase of the sequential diagnosis
process in this paper.

The algorithm for multiple fault diagnosis is based
on candidate generation in local subspaces, and then
combining the results from local subspaces in a man-
ner that achieves global consistency over the entire
space. Three factors form the primary issues in algor-
ithm development:(i) decomposition of the system,
(i) candidate generation in individual partitions, and
(iif) the combination scheme, where results from indi-
vidual partitions are put together to achieve global
consistency. Each one of these are discussed in some
detail below.

2.1 Decomposing the circuit

Fig. 1 and 3 are examples of two circuits on which
we apply the diagnostic algorithm. These circvits have
one or more input and output points, and the circuit
configuration can be represented in network form
with components mapped into nodes, and interco-
nnections into links. Given that these circuits can, in
general, be made up of large numbers of components
with complex interconnections, a natural approach to
solvg the problem is by a divide and conquer or par-
titioning approach. The idea, in general, is to par-
tition the problem into smaller parts, find solutions
for the parts, and then combine the solutions for the
parts into a solution for the whole. The advantage of
this method is that even if the solution process is
computationally complex, the adverse effects of com-
plexity are not as drastic when one deals with small
problem sizes. Intuitively, this notion can be exing the
search process. The cost of path‘ analysis is less in
smaller spaces, therefore, searching and eliminating
unlikely paths in earlier stage of the search helps in
reducing search cost.

As-discussed earlier, it is assumed that the first set

of observations are made at the terminal (output)
poinis of the circuit, therefore, partitions are formed
by grouping together all components that affect the
same terminal point. This structural division is
created by following backward from the output and
picking up all components in the path till input points
are reached. The components of a partition are said
o create a context space. Note that a component can
belong to more than one context space. It turns out
that the common components (those shared by more
than one partition) play a key role in determining global
consistency of the faulty component sets.

2.2 Consistent candidate set

As discussed earlier, the diagnostic procedure is
initiated by the detection of symptoms. Symptoms are
defined as discrepancies between actually observed
behavior (measurements) made on the system, and
behavior (measurements) predicted by the system
model. When the system is working (behaving) correctly,
the output measurements can be justified by the fact
that indrvidual components that influence the output
are also behaving correctly, i.e., given M,, M;,----,
M, are directly related to output, V;, if M,, M,,-,
M, are ok., then V; is good. We assume that there
are no design and fabrication errors. In Al termin-
ology, the set {M;, M;,*-, My} can be defined as an
assumption that explains V. However, if the output
V: is observed to be faulty, then the ‘above assump-
tion is no longer valid, and is said to be inconsistent
with the observed measurement. Consistency is restored
when we identify a set (or sets) of faulty components
that can explain the symptoms and other measurements
in the circuit.

Note that inconsistencies are detected locally, but
must be resolved globally, ie., determining V; is
faulty implies that{M,, M;,-,M;) is inconsistent,
however, choosing M;E€M,;, M,,-,My)as faulty
(indicated by M;)} may be an assumption that explains
V; (i.e., achieves local consistency) but it may not'be

globally consistent because M; is not consistent with



measurement V,, being correcl. For example, in Fig.1,
assuming output at M; is faulty is a plausible reason
for f being incorrect, but by itself is inconsistent with
the fact that measurement g is observed to be correct.
In other words, individual symptoms give rise to
inconsistences that are resolved locally but need to be
propagated globally to ensure that the set of ass-
umptions about the overall system (which components
are faulty, and which are o.k.) explain all the output
measurements, Qur algorithm uses the partitioning
scheme discussed in section 2.1 to reduce the combi-
natorial problem thal arises in achieving global con-
sistency, especially when multiple candidates can be
considered to be faulty.

The first step in the multiple fault identification
process involves selecting possible faully components
in individual partitions. For the faulty partition, each
component could be a candidate. In the above example,
given V; is incorrect, [M,], IM,],--,[M,] are possible
fault candidates based on that one measurement. OF
course, any superset of a candidate set may also be a
candidate, however, for this study we are only
interested in minimal candidate sets. The minimality
property implies that particular candidate set includes
a minimum number of faulty candidates that explains
all measurements consistently;any smaller number
cannot correctly explain all measurements. Note that
this does not cover the entire spectrum of errors that
could occur. For example, even if the output meas-
urement is correct for a certain set of input values, a
pair of components that cancel out each other’s
etrors, could still be faulty. Sometimes errors are
blocked out by particular characteristics of the
components. For instance, an and-gate will not {rans-
mit an error in an input line if any of its other inputs
is low. These issues, which require deeper behavioral
analysis, are not dealt with in this paper.

As discussed, when a symptom is observed, the
possible candidates are generated by local resolution
of assumptions within the partition, then the candi-
date sets are successively extended to increasingly distant

neighboring partitions since the overall symptoms
need to be explained in terms of the combined set of
faults from different partitions, Twe partitions that
share at least ome component are called structurally
adjacent (or connected). Partitions may be structur-
ally connected through a chain of partitions (e.g., P, is
adjacent to P;, and P; to P, then P, is structurally
connected to Py through P,. Two partitions that are
directly adjacent are said to be one apart. The
shortest distance between two partitions is i1 if
there are at least i partitions in any chain from one to
the other.

The candidate generation scheme starts with a
faulty partition (i.e., a partition with a faulty meas-
urement), identifies all possible single faults, and then
combines the results from this partition with adjacent
partitions sequentially in the order of increasing distance
till the entire circuit is covered. The combination
scheme discussed in the next section maintains global
consistency during the combination process. Fault
diagnosis can be done independently in disjoint
sections of the system.

2.3 Combination scheme

The combination scheme is based on the intuitive
assumption that single faults are more likely than
double, which are more likely than triple faults, and
so on. This assumption can be exploited so that only
minimal sets of multiple candidates are generated.
The mplications is that any superset of a generated
candidate is a possible fault candidate but with a
much less likelihood of occurrence. Based on this idea
for generating only minimal sets, the diagnostic algor-
ithm begins by forming single fault candidate sets, L
e., for every partition whose output measurement is
faulty, every component in that partition is considered
a singleton fault candidate. At the first step, partitions
whose output measurements are not faulty are
ignored. The rest of the algorithm involves iterative
combination with adjoining partitions till the entire
circuit is covered.
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Note that two cases can occur-(i) candidates from a
faulty partition may need to be combined with an
adjacent partition with no faults;mn this situation we
have to consider double faults for components that
are shared between the partitions. A faulty component
in the intersection must be compensated for by a
fanlty component in the good partition, so that
measurements at the terminal point are observed to
be good, and (i) the two adjacent partitions are
faulty;in this case, form all pairs of components that
are not shared between the two partitions (one from
each). The components shared between the two
parlilions form singleton candidate sets. The combined
partitions now can be considered a new faulty par-
tition, and the combination step is repeated for

another neighboring partition.

M1

Al

|

T

(Fig. 1) Example circuit 1

The simple circuit shown m Fig. 1 is used as an
example in a number of previous papers (7], [3], etc.).
There are two adders and three multipliers. Each
module has two inputs and one output. Applying the
decomposition process to this circuit produces two
partitions F and G corresponding to output measure-
ment points f and g, respectively. Partition F=[M,,
M,, A,l. The components are obtained by tracing
back from output terminal f to input terminals.

When f (F partition) is observed to be faulty in the
example circuit, the assumption(A,, M,, M;)is

violated because f would be necessarily correct if Aj,
M,, and M, are all working correctly. The corre-
sponding candidate sets are three singletons:{[A],
[M,], IM}}. Given that g is observed to be gocd, the
combination scheme is invoked in context (i} (ie.,
combine fault sefs from a faulty and a good partition).
The scheme looks for common elements in the par-
tition F and G. In this case it is M,. Note that M, by
itself being faulty contradicts the observed output
measuremen! at g. To achieve consistency, at least
one other component in G must be faulty, so that the
two faults compensate each other. Based on this
analysis the new set of minimal candidates is {[M,],
[Al, Mz, Azl [Ma, M|} Further testing or checking
actual functionalities may reduce the candidate set
but that is not an issue discussed in this paper.

Note that the candidate size is one or two. When
partitions are merged, the maximum candidate size is
the maximum of the distances between two partitions.
Note also that candidate sets whose size is greater
than the total number of fault symptoms observed,
include components whose errors compensate each

other.
3. Algorithm for Candidate Generation

The overall algorithm for candidate generation is

summarized as follows:

Partition the circuit
Check measurements
if no discrepancy detected, stop
Pick up one faulty partition
Repeat
Choose a neighbor partition
Nogood checking
if it is good partition
call fault vs good combination procedure
else
call fault vs faulty combination procedure

Backward search to find the missing



candidates
Combined partition becomes a new faulty
partition

until all partitions are combined

The individual steps of the algorithm are discussed
below. The combining algorithm admits two possibilities
:(i) combine a faulty partition with a good one, and

(i) combine two faulty partitions.

3.1 Partitioning and measuring

3.1.1 Partition the circuit.

The circuit is divided into partitions by the method
described in section 2.1. If partitions are not all struc-
turally linked, i.e., there exist group of partitions that
share no components with others, form disjoint
groups and apply the algorithm separately to each
group of partitions.

3.1.2 Check measurements.

Measurements are taken at preselected (usually ter-
minal) points. Then they are compared with expected
values computed from a model of the correctly
functioning system. If there are no discrepancies, it is
assumed that the system is functioning correctly. Note
that this need not be true in general, e.g., faults may
cancel each other for input set.

Realistic diagnostic practice often involves performing
multiple tests in sequence to get a better hold on the
nature of the faults observed. As discussed earlier, a
particular input sel may not detect an existing fault,
but some other might. We again skirt this issue in this
paper, and assume the right set of inputs have been
applied to detect all faults that exist. Of course, that
may require more than one input set, but it really
does not affect the part of the process we concentrate
on.

3.2 Combining the partitions
As discussed earlier, a faulty partition is chosen as
the -starting point for candidate generation. Each
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componeni in this partition represents a singleton
candidate that may minimally explain the faulty
behavior at the output port. This partition is then
combined with one of its neighbors. Two cases can
occur:the second partition output is faulty, or the
second partition output is good. Different scheme
developed for each case are presented later. The
combined partition can now be evoked upon as a
single faulty partition, which is then combined with
another neighbor. This sequential process (see Fig. 2)
continues till all overlapping partitions are included.
Note that for every new combination, the size of the
maximum candidate set included may increase by 1.
Therefore, if there are k partitions, the maximal size
of a candidate set will be k. Also, if certain partitions
are completely disjoint then the candidate generation
algorithm can be applied to each separately.

faulty %

(Fig. 2) Combining Order

{Fig. 3) Combining two partitions

3.2.1 Combining method

Fig. 3 shows two partition P, and P; being
combined. Let us assume P; is a result of previous
partition combinations, and P, is a single partition to
be combined with P. Let O; represent the set of
modules in P, that are not in P, O; represent the set
of modules in P; that are not in P, and O; represent
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the sel of modules that are common to P; and P;. If
the output measurement at P; is good, then the com-
bination process invoked is a faulty +good scheme.
(Once the P; and P; combination is complete, Py will
be renamed P; to keep the number of subscripts under
control.).

The first step in the combination process is to gen-
erate nogood candidate sets (Note that this is ATMS
terminology [7]). A nogood really implies a set of
modules that in no way can justify observed meas-
urements, and once a set is established to be nogood,
it and any superset of nodes that includes these nodes
remain throughout the computation. For example,
consider the circuit in Fig. 5. If partition F is found
to be faulty, and G is good, then any pair of modules
in the intersection of F and G, e.g., (M2, M) is a
nogood candidate. This is because they have contra-
dictory roles in the two partitions. In partition F they
are together supposed to explain a faulty measure-
ment, whereas in partition G they are supposed to
cancel each other’s faults and produce a correct
measurement, Therefore, identifying and recording
nogoods enables to cut down the search for possible
candidates. For example, the pair M; M,y or any
superset of M, Mje can be considered to be a poss-
ible minimal candidate set.

Following this scheme, the same is done for modules
in Oy that are shared between Pp €P; and P;. Note
nogoods are established only for partition pairs where
one of them has a faulty measurement and the other
does not (e.g., P, faulty and P; good, or vice versa).
Then, if any superset of the newly established nogoods
already exist in the current minimal candidate set,
they are removed. The establishment and mainten-
ance of nogood labels is implemented using the
ATMS scheme discussed earlier. We next elaborate

on the two possible scenarios for combinations:
a) faulty +faulty

" - This case holds for combination of two neighbor

partitions, P; and P; whose measurements are both
faulty, or P; is a previously merged partitions in
which at leasl one component partition was faulty,
and P; is a single partition that neighbors P; but has
not yet been merged into P,. Pj also has a faulty
measurement. The combination scheme can be summa-
rized as forming a new partial set C8’; from CS§; (the
existing candidate sef) and C; (a candidate) according

to:

{[GUm]IC €CS, and Vm; €C; also €0; and
jash EO}} U ‘{[C,][CIECSl ffallm €C also GOij}

The rationale for the above is every individual can-
didate set from the nonoverlapping sets O; and Q; are
merged to form a larger minimal candidate set, whereas
a candidate set from the overlap O; remains as is,
because it may also account for the new faulty

measurement without creating an inconsistency.
b) good +faulty

In this case, partition P; (single or merged) is
faulty, and its neighbor P; (not yet merged) has a
good output measurement. Step 1 here is the same as
before, remove all candidates that are nogoods or
supersets of nogoods. The partial candidate set CS'; is

computed from CSi as follows:

{(G]IG €CS;, and Vm; €G, m €0, ULIG U
IIZI_I]IC1 ECS;, and ':'Im; ECi, m; EO;J—, mj EOj}

The rationale for the first component above is that
any minimal candidate that has no overlap with
non-faulty partition P; remains consistent, and continues
to be a minimal candidate. However, if it overlaps
with P; it needs to pick up an additional module from
0, so that a pair of faulty modules within P; cancel
each other, and thereby produce a correct result.

Note that if C; contained a pair (or more) modules

that was in Oy, it would be previously removed as a



nogood. Therefore, each C; that forms the second

union, usually has only one module, m; O

3.3 Backward search

When two partitions are merged and one partition
is made up of previously merged partition, it may
happen that the above procedure may miss some
candidates in a particular configuration. Fig. 4 depicts
such a situation. Consider a previously merged par-
tition P; being merged with a neighbor partition P;
Candidates are usually missed when P; overlaps with
Pn P, and P, is faulty but P; is good. As a more
specific example, consider three partitions P, P, and
Py. Suppose that P; is faulty and P; and P, are good
and now Py is going to be merged into the P;, P; com-
bination, To illustrate, let us subdivide the overlapped
section inlo 3 parts: Oy, Oj. and Oy. The faulty
+tgood procedure takes individual candidates from
Oy combines them with candidates in Oy to form
double faults, and candidates with elements in On
and Oy to from triple faults. But Oy and Oy are
never faken inlo account even though there are poss-
ible candidates that could be generated from them by
combining with components in the non-overlapped
part of good partition P{O;). The missing candidates
in this configuration are represented as follows :

tImg, my, mc]| m, €0y, my, Oy, and m, O;}.

P, P.

7o)

P

(Fig. 4) Backw

If a faulty partition is merged into the previously
nerged one, then the components that need to be

considered are [rom the intersection between the
faulty partition and good partitions from the pre-
vicusly merged partition that are direct neighbors.
Suppose in this case that P, is faulty. Then only part
fo be taken care of is Oy, Other intersected subsections
(Oi and Oy) are normally processed as P; is merged.
But Oy will not combine with Q; and result in a can-
didate with any component from O;. Additional

candidates are generated as follows:
{[m,, my, m ]l m, €0y, my, O, and m, O;}

3.4 Stop combination procedure

In case of very large, complex systems or circuits
where the number of components and partitions (e,
output ports) are large, if only a few symptoms are
observed (e.g., only 1 or 2 faulty partitions among a
total of 15), a stopping criteria may be applied so as
not o include any candidate set of size above a cer-
tain threéhold, L. This criteria is based on the premise
that multiple faults of large numbers are much less
likely to occur (failure probability will be very low).
In addition, using reasoning similar to Davis’ adjac-
ency principle [3], sequential combination starting
from a faulty partition may progress till the t nearest
neighbors are considered. This may be repeated for
all faulty partitions, and the total candidate set is the
union of the individual ones.

4. Implementation issue

The multiple fault diagnosis system implementation
is based on two schemes:a network-type computing
scheme for model-based reasoning, and an ATMS for
maintaining consistent minimal fault sets. A given
circuit can be easily mapped into a network-type
structure in which nodes represent the modules and
links the interconnections. Each node is described in
terms of functional composition of three elements:
input, output and function. The function is coded in a

demon-like procedure which is initiated to run and
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compule the result based in input values, and pass it
onto the next module. The only failures considered
are the ones in modules. In other words, there are no
bridge faults, intermittent errors, design errors, or
assembly errors. Each module can form a singleton
fault set or form an element of a multiple fault set.
Each fault set is called an assumption. Assumptions
are managed using the ATMS scheme which ensures
that consistency is specified in individual context
spaces and retained in the combined space. Since the
justifications for the symptoms are possible fault sets,
which are equivalent to candidate sets. When new
partitions are considered, new environmen(s are
introduced. Each environment is checked to see if it is
subsumed by already existing environment. If their
relationship is superset, only minimal set is retained
in the ATMS database. Nogood is also recorded in
the database and any superset of nogood node is also
nogood. Therefore, the ATMS performs important
bookkeeping functions.

5. Example

A detailed example which involves determining
minimal candidate sets for the circuit shown in Fig. 5
is discussed to illustrate the details of the algorithm
presented in Section 3 and 4. The circuit has three
outputs f, g, and h with corresponding partitions F,
G, and H. Candidates are represented by capital
letters enclosed by square brackets. Suppose f is

T (Fig. 5) Circuit 2

fauity and g and h are good. Since f is faulty, g or h
can be combined with f. It can be shown that the
combination sequence is immaterial, however, for this
example we first combine F and G, and then combine
H with the FG combination. From Fig. 5, we derive
partitions F, G, and H:

F={M,, M3, Ms, My, My, My, M5}
G=1M1, M3, My, Mg, Mg, Mo, My, M12}
H={M,, Ms, Mg, My, My;, M3, Mj3}

Stepl :Consider F. The minimal candidate sets are
single components:
{1My], IMal, IMd), IMJ], [Myol, IMy], [ Masl}

Step 2:Combine results of F with partition G. Note
this is a fault + good combination. The resultant can-
didate set 1s:

{IM, 1. (M), My,
Mo M), Mo M, IMigMal, IM oM,
M, M), [M; Mg}, Mo M, (MMl
MsM,1, [MsMl, IMsMl, [MsM;l,
My Mal, [My; M), (M M), M Mgl

Single faults represent components or modules in F
that have no effect on G, and double faults arise
because a candidate in F also affects the G output,
therefore, a second component from G is needed to
compensate for this candidate. An example of a
nogood node generated is (M, Mjo). After combi-
nation, FG is treated as a single faulty partition.

Step3:Now partition H is combined with the FG

combination. Modules in the intersection of FG with

H are:
{M4, MSs Mlh M|2, MIB}

Any candidate from FG, which does not belong to

H partition, remains in the new candidate set FGH:



{IMy), M), M oM, [M oMyl M M3, M, Mgl}

Pairs from intersection F and H, {Ms, M,,, M3}
are recorded as nogoods because they are shared
between a faulty partition F and a good partition G.
Candidates of FG which contain overlapped modules
are combined with modules of the H partition which
are not shared, producing new candidates. For
instance, [M oMy} is joined with Mg or My to pro-
duce new candidates;[M¢M;2M,] and [M;oM;;Mg].
M belongs only to F so faulty f is explained with
this singleton candidate. [M;(M;J] and [M;M,]
explain the fault plus the fact that G and H are o.k.
Candidate like [MsM,] in the intersection can also
explain all the symptoms of combined partition.

Step 4:The backtrace algorithm is invoked to find
missing candidates. To calculate these extra candidates
by backtrace, the system looks for possible double
candidates from the intersection of F and H like {M,;
M, and [M;3M,;}, and then combines them with
other modules from other partitions of FG, in this
case G. For instance, M13M4 can explain both f and
h but not g so module from G is combined and
results in a new candidate, [M;;M,M;l. Another
possibility is [M;3 M Mj].

6. Discussion

The candidate generation algorithm developed here
bases its analysis on cirquit schematics. By employing
the partilioning structure, it provides a method for
avoiding combinatorial explosion (considering all
possible combinations) in multiple fault generation.
Using the ATMS, as a method for bookkeeping
makes the computational scheme more efficient.
Behavioral description may be invoked to validate
possible candidates. Furthermore, fauit models can be
substituted for faulty candidates to confirm whether
they can generate the observed symptom (actually

‘mieasurement). This seems to be a good method for

further reducing possible candidates [6].

Our method could also be extended to cover differ-
enl kinds of fault combinations. For example, the
double fault cancellation may not explain the symp-
tom, rather the double faults together may cause the
faulty symptom. This would require an additiona!
ATMS space to keep the minimality of the candidates.
Qur method currently does not take care of other
characteristics of the components such as measure-
ment cost, failure rate, etc.,, which can be used to
make decisions on the next measurement point based
on which fault sets can be further reduced. These
parameters will be introduced inlo the diagnosis

scheme to build a more practical system.
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