• 제목/요약/키워드: Model validation

검색결과 3,218건 처리시간 0.211초

항공기 날개의 통계적 중량 예측식 도출 연구 (A Study on Deriving the Statistical Weight Estimation Formula for an Aircraft Wing)

  • 김석범;정한규;황호연
    • 한국항공우주학회지
    • /
    • 제46권1호
    • /
    • pp.32-40
    • /
    • 2018
  • 본 논문에서는 개념설계 단계에서 주로 사용되는 통계적 중량 예측식 도출 방법에 관한 연구를 수행하였으며 Microsoft Excel을 이용해 이를 프로그램화하고 제트 여객기에 적용하여 검증하였다. 기존 중량 예측식들의 변수들을 참고하여 데이터베이스를 구축하였고 이를 사용하여 제트 여객기 날개 중량 예측식을 모델링하였다. 모델의 과적합 문제를 해결하기 위해 K-fold cross validation 방법을 사용하여 모델을 평가하였다.

CALIBRATION AND VALIDATION OF THE HSPF MODEL ON AN URBANIZING WATERSHED IN VIRGINIA, USA

  • Im, Sang-Jun;Brannan, Kevin-M.;Mostaghimi, Saied
    • Water Engineering Research
    • /
    • 제4권3호
    • /
    • pp.141-154
    • /
    • 2003
  • Nonpoint source pollutants from agriculture are identified as one of the main causes of water quality degradation in the United States. The Hydrological Simulation Program-Fortran (HSPF) was used to simulate runoff, nitrogen, and sediment loads from an urbanizing watershed; the Polecat Creek watershed located in Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed hydrologic and water quality data collected at the watershed outlet and at several sub-watershed outlets. A comparison of measured and simulated monthly runoff at the outlet of the watershed resulted in a correlation coefficient of 0.94 for the calibration period and 0.74 for the validation period. The annual observed and simulated sediment loads for the calibration period were 220.9 kg/ha and 201.5 kg/ha, respectively. The differences for annual nitrate nitrogen ($NO_3$) loads between the observed and simulated values at the outlet of the watershed were 5.1% and 42.1% for the calibration and validation periods, respectively. The corresponding values for total Kjeldahl nitrogen (TKN) were 60.9% and 40.7%, respectively. Based on the simulation results, the calibrated HSPF input parameters were considered to adequately represent the Polecat Creek watershed.

  • PDF

"3+3 PROCESS" FOR SAFETY CRITICAL SOFTWARE FOR I&C SYSTEM IN NUCLEAR POWER PLANTS

  • Jung, Jae-Cheon;Chang, Hoon-Sun;Kim, Hang-Bae
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.91-98
    • /
    • 2009
  • The "3+3 Process" for safety critical software for nuclear power plants' I&C (Instrumentation and Control system) has been developed in this work. The main idea of the "3+3 Process" is both to simplify the software development and safety analysis in three steps to fulfill the requirements of a software safety plan [1]. The "3-Step" software development process consists of formal modeling and simulation, automated code generation and coverage analysis between the model and the generated source codes. The "3-Step" safety analysis consists of HAZOP (hazard and operability analysis), FTA (fault tree analysis), and DV (design validation). Put together, these steps are called the "3+3 Process". This scheme of development and safety analysis minimizes the V&V work while increasing the safety and reliability of the software product. For assessment of this process, validation has been done through prototyping of the SDS (safety shut-down system) #1 for PHWR (Pressurized Heavy Water Reactor).

A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods

  • Lee, Kyunghoon;Murugesan, Mohanraj;Lee, Seung-Min;Kang, Beom-Soo
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.18-27
    • /
    • 2017
  • A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.

Numerical convergence and validation of the DIMP inverse particle transport model

  • Nelson, Noel;Azmy, Yousry
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1358-1367
    • /
    • 2017
  • The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector responses (using the adjoint transport solution) with measured responses. DIMP performs well with forward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to the correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search volume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.

Development of Calculating System of Solids Level to Harvest High Solids Potato (Solanum tuberosum L.)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • 원예과학기술지
    • /
    • 제31권1호
    • /
    • pp.103-109
    • /
    • 2013
  • Estimating the high tuber solids needs a simulation system on potato growth, and its development should be obtained by using agricultural elements which analyze the relationship between crop growth and agricultural factors. An accurate simulation to predict solids level against climatic change employs a calculation of in vivo energy consumption and bias for growth and induction shape in a slight environmental adaptation. So, to calculate in vivo energy consumption, this study took a concept of estimate of the amount of basal metabolism in each tuber. In the validation experiments, the results of measuring solid accumulation of potatoes harvested at dates suggested by simulation agreed with the actual measured values in each regional field during the growth period of years from 2006 till 2010. The mean values of tuber solids level and inter-annual level variation in validation experiments were predicted well by the simulation model. And also, the results of validation experiments represent that concentration of tuber solids were due mainly to the duration of sunshine, above 190 hours per a month, and the cumulative amount of radiation, above 2,200 $MJ{\cdot}m^{-2}$, of the effective growth period.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

Theoretical Validation of Inheritance Metric in QMOOD against Weyuker's Properties

  • Alharthi, Mariam;Aljedaibi, Wajdi
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.284-296
    • /
    • 2021
  • Quality Models are important element of the software industry to develop and implement the best quality product in the market. This type of model provides aid in describing quality measures, which directly enhance the user satisfaction and software quality. In software development, the inheritance technique is an important mechanism used in object-oriented programming that allows the developers to define new classes having all the properties of super class. This technique supports the hierarchy design for classes and makes an "is-a" association among the super and subclasses. This paper describes a standard procedure for validating the inheritance metric in Quality Model for Object-Oriented Design (QMOOD) by using a set of nine properties established by Weyuker. These properties commonly using for investigating the effectiveness of the metric. The integration of two measuring methods (i.e. QMOOD and Weyuker) will provide new way for evaluating the software quality based on the inheritance context. The output of this research shows the extent of satisfaction of the inheritance metric in QMOOD against Weyuker nine properties. Further results proved that Weyker's property number nine could not fulfilled by any inheritance metrics. This research introduces a way for measuring software that developed using object-oriented approach. The theoretical validation of the inheritance metric presented in this paper is a small step taken towards producing quality software and in providing assistance to the software industry.

SE 프로세스 기반 국방 M&S체계 개발 절차 연구 (A Study on SE Process based Defense M&S System Development Procedures)

  • 이동준;고성현;이상복;노광현;윤주일
    • 시스템엔지니어링학술지
    • /
    • 제19권1호
    • /
    • pp.44-55
    • /
    • 2023
  • The defense M&S system, which has been classified as a weapon system between requirements determination and project implementation, is being developed by applying the weapon system development procedure of the Defense Acquisition Program Administration. The M&S system abstracts and models the real world to suit the intended use and proceeds with the process of developing it as a software-oriented system. Overseas, the conceptual model development stage is staged before entering the design stage after the requirements analysis. In addition, each step includes verification and validation processes. In Korea, while establishing and applying the weapon system development procedure based on the SE process, the M&S system is also applied in the same way as the general weapon system, limiting appropriate development outputs and verification and validation. In this study, the system development procedure of the M&S system is established and presented based on the relevant standards and SE process of developed countries.

역순 워크 포워드 검증을 이용한 암호화폐 가격 예측 (An Accurate Cryptocurrency Price Forecasting using Reverse Walk-Forward Validation)

  • 안현;장백철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.45-55
    • /
    • 2022
  • 암호화폐 시장의 규모는 날이 갈수록 커져가고 있으며, 대표적인 암호화폐인 비트코인의 경우 시가총액이 500조를 넘어섰다. 이에 따라 암호화폐의 가격을 예측하려는 연구도 많이 이루어졌으며, 이들은 대부분 주식가격을 예측하는 방법론과 유사성을 띄는 연구들이다. 하지만 선행연구를 비춰 봤을 때 주식가격예측과 달리 암호화폐 가격 예측은 머신러닝의 정확도가 우위에 있는 사례가 많다는 점, 개념적으로 주식과 달리 암호화폐는 소유로 인한 수동적 소득이 없다는 점, 통계적으로 시가총액 대비 하루 거래량의 비율을 살펴봤을 때 암호화폐가 주식 대비 최소 3배이상 높다는 점이 도출되었다. 이를 통해 암호화폐 가격 예측 연구에는 주식 가격 예측과 다른 방법론이 적용되어야 함을 본 논문에서 주장하였다. 우리는 기존에 주가 딥러닝 예측에 사용되던 워크 포워드 검증를 응용한 역순 워크 포워드 검증을 제안하였다. 역순 워크 포워드 검증은 워크 포워드 검증과 달리 검증 데이터셋을 테스트 데이터셋에 시계열상으로 바로 앞에 부분으로 고정시켜놓고, 훈련데이터를 훈련 데이터셋에 시계열상으로 바로 앞 부분부터 서서히 훈련 데이터셋의 크기를 늘려가면서 검증에 대한 정확도를 측정한다. 측정된 모든 검증 정확도 중 가장 높은 정확도를 보이는 훈련 데이터셋의 크기에 맞춰서 훈련 데이터를 절삭시킨 뒤 검증 데이터와 합쳐서 실험 데이터에 대한 정확도를 측정하였다. 분석모델로는 로지스틱 회귀분석과 SVM을 사용했으며, 우리가 제안한 역순 워크 포워드 검증의 신뢰성을 위해서 분석 모델 내부적으로도 L1, L2, rbf, poly등의 다양한 알고리즘과 정규화 파라미터를 적용하였다. 그 결과 모든 분석모델에서 기존 연구보다 향상된 정확도를 보임이 확인되었으며, 평균적으로도 1.23%p의 정확도 상승을 보였다. 선행연구를 통해 암호화폐 가격 예측의 정확도가 대부분 50%~60%사이에서 머무르는 걸 감안할 때 이는 상당한 정확도 개선이다.