Development of TREND dynamics code for molten salt reactors |
Yu, Wen
(Shanghai Institute of Applied Physics, Chinese Academy of Sciences)
Ruan, Jian (Shanghai Institute of Applied Physics, Chinese Academy of Sciences) He, Long (Shanghai Institute of Applied Physics, Chinese Academy of Sciences) Kendrick, James (Department of Nuclear Engineering, University of California) Zou, Yang (Shanghai Institute of Applied Physics, Chinese Academy of Sciences) Xu, Hongjie (Shanghai Institute of Applied Physics, Chinese Academy of Sciences) |
1 | S.J. Ball, T.W. Kerlin, Stability Analysis of the Molten Salt Reactor Experiment, Oak Ridge National Laboratory, 1965. ORNL-TM-1070. |
2 | J. Serp, M. Allibert, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319. DOI |
3 | M. Delpech, S. Dulla, C. Garzenne, Benchmark of dynamic simulation tools for molten salt reactors, in: Proceedings of the International Conference GLOBAL, New Orleans, LA, 2003. |
4 | M.S. Greenwood, B.R. Betzler, et al., Demonstration of the advanced dynamic system modeling tool transform in a molten salt reactor application via a model of the molten salt hemonstration reactor, Nucl. Technol. 206 (2019) 1-27. |
5 | M.H. Jiang, H.J. Xu, Z.M. Dai, Advanced fission energy program-TMSR nuclear energy system, Bull. Chin. Acad. Sci. 3 (2012) 366-374 (In Chinese). |
6 | J. Krepel, U. Grundmann, et al., DYN3D-MSR spatial dynamics code for molten salt reactors, Ann. Nucl. Energy 34 (2007) 449-462. DOI |
7 | M. Zanetti, A. Cammi, A. Luzzi, et al., Extension of the FAST code system for the modelling and simulation of MSR dynamics, in: International Congress on Advances in Nuclear Power Plants, May 03-06, 2015. Nice, France. |
8 | J. Ruan, Y. Zou, et al., Fluoride-salt cooled higlrtemperature reactor hardwareirrthe-loop simulation and preliminary test, Atom. Energy Sci. Technol. 52 (2018) 659-665 (In Chinese). |
9 | S. Patankar, Numerical Heat Transfer and Fluid Flow, first ed., Taylor & Francis, Oxford, 1980. |
10 | H. Francis Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182. DOI |
11 | R.C. Robertson, MSRE Design and Operations Report, Part I-Description of Reactor Design, Oak Ridge National Laboratory, 1965. ORNL-TM-278. |
12 | J. Krepel, U. Grundmann, et al., DYN1D-MSR dynamics code for molten salt reactors, Ann. Nucl. Energy 32 (2005) 1799-1824. DOI |
13 | G.J. Auwerda, D. Lathouwers, Computational modeling of a molten salt Reactor, ResearchGate (2007). https://www.researchgate.net/publication/242184604. |
14 | N.E. Todreas, M.S. Kazimi, Nuclear Systems I Thermal Hydraulic Fundamentals, first ed., Hemisphere Publishing Corporation, New York, 1990. |
15 | C. Tripodo, A.D. Ronco, S. Lorenzi, Development of a control-oriented power plant simulator for the molten salt fast reactor, J. Nucl. Sci. Technol. 5 (2019) 13. |
16 | L. Kendrick Huddar, Application of frequency response methods in separate and integral effects tests for molten salt cooled and fueled reactors, Nucl. Eng. Des. 329 (2018) 3-11. DOI |
17 | N. Zweibaum, J.E. Bickel, Design, Fabrication and Startup Testing of the Compact Integral Effects Test Facility in Support of Fluoride-Salt-Cooled, High Temperature Reactor Technology, in: International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2015. Chicago, August 30-September 4. |
18 | M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors-pistory, states, and potential, Nucl. App. Technol. 8 (1970) 107-117. DOI |
19 | C. Forsberg, The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant, Prog. Nucl. Energy 47 (2005) 32-43. DOI |
20 | P.N. Haubenreich, Molten-salt Reactor Experiments, Oak Ridge National Laboratory, 1969. ORNL-4344. |
21 | B.E. Prince, J.R. Engel, S.J. Ball, Zero-power Physical Experiments on Molten-Salt Reactor Experiment, Oak Ridge National Laboratory, 1968. ORNL-4233. |
22 | J. Cai, X.B. Xia, Analysis on reactivity initiated transient from control rod failure events of a molten salt reactor, Nucl. Sci. Tech. 25 (2014) 78-82. DOI |
23 | F. Allan Henry, Scott, Nuclear Reactor Analysis, first ed., John Wiley and Sons, New York, 1976. |
24 | F. Blanchon, T. Ha-Duong, J. Planchard, Numerical methods for solving the reactor kinetic equations, Prog. Nucl. Energy 22 (1988) 173-180. DOI |
25 | E. Virgil Schrock, A revised ANS Standard for decay heat from fission products, Nucl. Technol. 46 (1979) 323-331. DOI |
26 | K.J. Astrom, T. Hagglund, PID Controllers : Theory, Design and Tuning, first ed., Instrument Society of America, New York, 1995. |
27 | C.B. Shi, M.S. Cheng, G.M. Liu, Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code, Nucl. Eng. Des. 305 (2016) 378-388. DOI |