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Abstract 

A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two 

regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental 

data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain 

compensation for material constants to account for strain effect. To associate the material constants with strain, we first 

evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a 

function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The 

constructed constitutive models were examined systematically against measured flow stresses by validation methods. The 

predicted material constants were found to be quite accurate compared to the actual material constants. However, notable 

mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which 

carry out validation with not the entire, but a single tensile test case. 
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1. Introduction 
 

Understanding the flow behavior of metals and alloys at 

hot deformation conditions is essential in metal forming 

processes, such as hot rolling, forging, and extrusion[1, 2]. 

Many researchers have utilized constitutive equations, also 

known as flow stress models, to represent flow stress 

behavior and to investigate the response of materials under 

different loadings[2, 3]. For flow stress estimation at high 

temperature, constitutive equations can be developed based 

on an Arrhenius-type equation because it is applicable over 

a wide range of strain rates and temperatures [4].  

In this paper, we exploit regression Kriging for strain 

compensation in the context of Arrhenius-type 

constitutive model construction. In addition, we compare 

the utility of regression Kriging to that of polynomial 

regression using an experimental data set digitally 

extracted from the published research work[5]. For 

prediction quality evaluation, we apply numerical and 

graphical validation methods to the constructed 

Arrhenius-type constitutive models. In particular, we 

investigate the closeness of predicted and measured flow 

stresses of each tensile test case unlike the previous 

research[5], which used the whole tensile test data. 

Consequently, this methodical validation shows 

discrepancies between the predicted and the measured 

flow stress, obscured in Ref.[5]. Overall, we present 

systematic construction and validation approaches for 

flow stress modeling based on the Arrhenius-type 

constitutive equation with regression methods. 
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2. Formulations 
 

  2.1. Arrhenius-Type Constitutive Equation 

The relationship between a strain rate   and a 

temperature T  can be described with the Zener-

Hollomon parameter Z  [6, 7] such that 

  exp ,Z Q RT              (1) 

where Q  is the activation energy of deformation, and 

R  is the gas constant, 8.314
1 1

Jmol K
 

. Depending on the 

level of flow stress, Z  can be related to different flow 

stress expressions as follows. First, the power law 

equation 

1

1 ,
n

Z A                  (2) 

where 
1

A  and 
1

n  are material constants, is commonly 

used for a low level of flow stress. Second, the 

exponential equation 

 
2
exp ,Z A               (3) 

where 
2

A  and   are material constants, is preferred 

for a high level of flow stress. Last, the hyperbolic sine 

law equation 

  sinh ,
n

Z A               (4) 

where A , n  and   are material constants, is useful 

for a wide range of flow stress; here   is the stress 

multiplier such that 
1

n  . 

To evaluate the material constants, we first equate each 

of Eqs. (2) to (4) to Eq. (1) and then take log 

transformation, which results in 

  
1 1

ln ln ln ,A n Q RT             (5) 

  
2

ln ln ,A Q RT               (6) 

     ln ln sinh ln .n A Q RT      (7) 

After taking partial derivatives of Eqs. (5) to (7) 

holding T , we obtain the following equations for 
1

n , 

 , and n  [5]: 

  
1

ln ln ln
, , .

ln ln sinh
T T T

n n
  


  

  
  
  

 

Similarly, by taking a partial derivative of Eq. (7) fixing 

 , we can evaluate Q  as follows: 

  

 

ln sinh
.

1
Q nR

T 





 

For the evaluation of 
1

A , 
2

A , and A , we use the log-

transform of Eqs. (2) to (4) such that 

  

1 1

2

ln ln ln ,

ln ln ,

ln ln ln sinh ,

Z A n

Z A

Z A n







 

 

 

 

where 
1

ln A , 
2

ln A , and ln A  can be found as the 

intercepts of straight-line equations composed of 

 ln , lnZ  ,  ln ,Z  , and    ln , ln sinhZ  , 

respectively. Once the material constants are determined, 

flow stress can be estimated by an Arrhenius-type 

constitutive equation derived from Eq. (7) as below [6]: 

 

  
, ; , ln , ,

ln ln1
arc sinh exp .

T Q A n

A Q RT

n

  





 


 
  

         

(8) 

Note that although Eq. (8) relates a temperature T  

and a strain rate   to flow stress  , it cannot account 

for strain effect; hence, strain compensation is required so 

that the material constants---such as Q , ln A ,  , and 

n ---can be associated with strain   as shown below: 

 

 

, , ; ( ), ln ( ), ( ), ( )

ln ln ( ) ( )1
arc sinh exp .

( ) ( )

T Q A n

A Q RT

n

       

  

  

 


  
  
  

         

(9) 

For this matter, we apply regression technology to a set 

of the material constants observed at strain values. 

 

  2.2. Regression Techniques 

  2.2.1. Polynomial regression 

Polynomial regression assumes that a response of 

interest R
i

y   can be written as a p th order 

polynomial function of an independent variable R
i

x 
 

as follows [8]: 
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2

0 1 2
,

p

i i i p i i
y x x x e              (10) 

where   1

0
R

p p

i i





  is regression coefficients, and 

R
i

e   is a measurement noise. For n  samples of 
iy   

observed  at  
1

R
n n

i i
x


 , Eq. (10) can be expressed in 

a matrix form such that 

2

1 1 11 1 1

2

2 2 22 2 2

2

1

1
,

1

p

p

p

n n nn n n

y ex x x

y ex x x

y ex x x







 

      
      
      
      
      

      

(11) 

which can be cast as 

,y X e   

where R
n

y  is n  observations, 
 1

R
n p

X
 

  is a 

design matrix, 
 1

R
p




  is 1p   regression 

coefficients, and R
n

e  is n  measurement noises. The 

estimate of   can be evaluated as 

 
1

ˆ ,
T T

X X X y


  

by the least squares method [9], [10]. Finally, the 

estimate of y  can be found with ̂  as follows: 

ˆˆ .y X  

 

  2.2.2. Regression Kriging 
Kriging is an interpolation technique that assumes 

observed data are generated by a Gaussian process from a 

statistical perspective. Based on a Kriging formulation for 

interpolation, regression Kriging takes account of noise in 

observations. In theory, regression Kriging views an 

observation ( ) Ry x  , where R
kx , as a realization 

of a Gaussian random variable 

( ) ( ) ( ),Y x Z x E x            (12) 

where R   is a mean trend, and both Z  and E  are 

random functions such that  2
~ 0,Z GP    and  

 2
~ 0, iiE GP    , respectively. In Eq. (12), 

2
R   

and 
2

R   are process and noise variances, respectively, 

  is a correlation function, and 
ii   is the Kronecker 

delta, whose value is 1 if i i . Note that Eq. (12) is 

based on the ordinary Kriging formulation since   is 

constant irrespective of x . Due to the assumptions, a 

random vector consisting of Y  is also a random function 

such that  2 2
~ 1 ,

ii
Y GP       and yields a 

multivariate Gaussian random variable following a multivariate 

Gaussian distribution 

    2 2 2
1 , 1 ,N I N I        where 1 R

n
  

is a vector of n  ones. Here,   and I  are correlation 

matrices constructed by   and 
ii  , respectively, and 

  is a normalized variance such that 
2 2

   . For 

the evaluation of 
il  at an observation point

    ,
i l

x x , 

typically employed is the Gaussian correlation function 

         2

1

, exp ,
k

i l i l

j j j

j

x x x x 


  
 
 
 
  

where R
j

   is a Kriging hyperparameter. 

Since a set of observations 
     1

, , R
n n

y y x y x     is distributed as a 

multivariate Gaussian, a likelihood function L is 

formulated for parameter estimation as follows: 

 

 

     

2

T 1

2 21 22

; , , ,

1 11
exp

22

.
n

L y

y I y

I

   

  

 



   
 

 

 
 
 

         

(13) 

 The estimates of  and 
2

  can be found by the 

method of maximum likelihood (ML) as below: 

 

 

1T

1T

1
ˆ ,

1 1

I y

I










 


 
     

and    

     
T 1

2
1 1

ˆ .
y I y

n

  




   
  

After the substation of the previously obtained ̂  and 
2

̂  into Eq. (13), a concentrated log-likelihood 

   2 1
ˆ, ln ln

2 2
c

n
I            (14) 

is formed and addressed by unconstrained optimization 

for the estimates of Kriging parameters   and  . Once 

the ML estimates are obtained, a new observation 
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    0 0
Ry y x   at a new observation point 

 0
R

k
x   

can be predicted as with the derivation of parameter 

estimates. The log-likelihood function of 
 0

y  is found 

as 

     
1T

0 2

1
ˆ ˆ( ) 1 ,

ˆ2
y y I y  





      1  (15) 

where y  is augmented observations such that 
 0 1

; R
n

y y y


    , and   and I  are augmented 

correlation matrices such that 
   1 1

R
n n  

 , 
   1 1

R
n n

I
  

 , namely 

T
,

1

I
I

 


 

 
  



 
 
 

        (16) 

where 
         

T
11 0 0

, , , , R
nn

x x x x  


    . 

Finally, the prediction estimate 
0

ŷ  is evaluated by the 

method of ML such that 

     
10 T

ˆ ˆ ˆ( ) 1 .y x I y   


      

 

3. Material Constants Modeling 
 

  3.1. Experimental Data 
For this comparative study, we used digitally extracted 

data of 70Cr3Mo steel in Ref. [5]. We removed the elastic 

region from the true stress-strain data to keep only the 

plastic stress-strain curve. The experimental cases are 

outlined in Table 1. For details of the stress-strain data 

acquisition, please see Ref. [5]. 

 

Table 1 Experimental conditions of 70Cr3Mo steel [5] 

for flow stress modeling 

 
  3.2. Model Construction 

As delineated in Section 2.1, the influence of strain on 

flow stress is not taken into account in the Arrhenius-type  

Table 2 Estimated coefficients of polynomial regression 

models with 70Cr3Mo steel 

 
Q (kJ/mol)  ln A (

1s
)   (MPa)  n  

0̂  3.802e2  3.267e1  1.490e 2   6.205  

1̂  8.295e2  7.181e1  -5.411e 2   1.829  

2̂  -5.833e3  -5.010e2  2.390 e 1   -5.898e1  

3̂  1.522e4  1.284e3  -4.936 e 1  1.939e2  

4̂  -1.853e4  -1.526e3  4.803 e 1  -2.634e2  

5̂  8.955e3  7.195e2  -1.661 e 1  1.346e2  

 

constitutive equation in Eq. (8). Because strain has a 

significant effect on stress, it is imperative to include 

strain in flow stress evaluation. For that purpose, we 

express the material constants of the Arrhenius-type 

constitutive equation, particularly Q , ln A ,  , and n , 

as a function of strain via polynomial regression and 

regression Kriging. To fit regression models, we took 

advantage of the curve-fitting toolbox of MATLAB [11], 

[12] and ooDACE [13]~[15] for polynomial regression 

and regression Kriging, respectively. For Kriging 

parameter estimation, the concentrated log-likelihood in 

Eq. (14) was optimized by the sequential quadratic 

programming within a log-transformed parameter domain 

bounded by 5  and 5 . Here polynomial regression was 

adopted as a comparison target since it is used in Ref. [5], 

and the correlations among the four material constants 

were neglected for the sake of simplicity. 

We first employed 5th order polynomial regression and 

regression Kriging for each of the four material constants 

of 70Cr3Mo steel. The resultant estimates of polynomial 

regression coefficients ˆ
i  and those of regression 

Kriging parameters  2ˆ ˆ,   are listed in Tables 2 and 3, 

respectively. As shown in Table 2, the estimates of 

polynomial regression coefficients is quite comparable to 

the others, which indicates that every ˆ
i  contributes to 

the variation of a material constant with respect to strain 

change. As for regression Kriging, unlike polynomial 

regression necessitating a total of six parameters, only the 

two parameters   and   suffice; the former is for 

assuming the mean trend to be constant in ordinary 

Temperature (K) Strain rate (s
-1

) 

1173 0.01 

1273 0.10 

1373 1.00 

1473 10.0 
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Kriging, and the latter is for having only one independent 

variable, strain. This difference in the number of required 

parameters for regression shows that regression Kriging is 

more compact than polynomial regression in delineating 

the nonlinear behavior of material constants subject to 

strain variation. 

 

Table 3 Estimated parameters of regression Kriging 

models with 70Cr3Mo steel 

 
Q (kJ/mol)  ln A (

1s
)  



(MPa)  
n  

̂  1.5653 1.4618 
9.1537 

e 1  

9.4449 

e 2  

2
̂  3.7969e2 2.9870 

3.8265 

e 6  
2.2276 

To cross-validate the estimated polynomial regression 

coefficients in Table 2 to those published in Ref. [5], we 

drew the polynomial regression functions of the material 

constants as shown in Fig. 1. Here, current and published 

refer to polynomial regression models developed by the 

current authors and by the previous researchers [5], and 

data indicates the digitally extracted data, not the genuine 

data. Figure 1 shows that both the current and the 

published polynomial regression models are quite alike, 

which conveys that digitization errors are inconsiderable. 

Overall, we conclude that the digitally extracted data 

would not significantly deviate from the original data in 

Ref. [5]. 

 

 

Fig. 1 Polynomial regression models of material constants for 70Cr3Mo steel 
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  3.3. Model Validation 
For the validation of regression models for material 

constants, we adopted both numerical and graphical 

methods. For the former, we utilized numerical metrics, 

such as the coefficient of determination  2
R , an 

average absolute relative error (AARE), and an absolute 

relative error (ARE). First, an 
2

R value shows the degree 

of variation explained by a regression model and is 

defined by 

 

 

2

2

2

ˆ
1 ,

i ii

ii

y y
R

y y


 






 

where iy  and ˆ
iy  are actual and predicted data, 

respectively, and y  is the mean value of actual data. 

Second, an ARE value denotes the magnitude of relative 

error of predicted data with respect to actual data and is 

defined by 

ˆ
ARE= .

i i

i

y y

y


 

Third, an AARE value is the mean of AREs and is defined 

by 

1

ˆ1
AARE= ,

i i

i

N

i

y y

N y


  

where N  is the number of predicted/actual data. Note 

that instead of a correlation coefficient r , we used 
2

R  

because it is more appropriate to evaluate the prediction 

capability of a regression model than the strength of a 

linear dependence between predicted and actual data. 

Table 4 presents the values of numerical validation 

metrics associated with polynomial regression and 

regression Kriging models. Note that a bold-faced number 

indicates that the corresponding surrogate outperforms the 

other hereinafter. In Table 4, regression Kriging 

demonstrates slightly more favorable values than 

polynomial regression; Q  and n  are better fitted by 

regression Kriging and polynomial regression, 

respectively. Because of acceptable numerical validation 

results in Table 4, the predicted material constants closely 

align with the observed material constants in Fig. 2. 

 
4. Flow Stress Model Validation 

 
As with the validation of material constants, we 

followed the same validation procedures to examine 

Arrhenius-type flow stress models based on the developed 

regression models. Note that unlike the previous research 

in Ref. [5], which validated the entire set of flow stress 

predictions at once, we separately 

validated each set of flow stress predictions one by one. 

This alternative validation scheme is rooted in the fact 

that one typically predicts flow stress at a specific 

temperature and strain rate condition, not at the whole 

temperature and strain rate conditions.  

Figure 3 illustrates that flow stress predictions do not 

significantly differ by either of the two regression 

methods. The predicted flow stresses of 70Cr3Mo steel in 

Fig. 3 well follow the measured flow stresses. According 

to the usual validation approach in Ref.  [5], r  is 

 

Table 4 Numerical validation of polynomial regression and regression Kriging models 

Model Metric Q (kJ/mol) ln A (s
-1

) α (MPa) n 

Regression 

Kriging 

2
R   0.9875  0.9886  0.9995  0.9910  

AARE (%)  0.4746  0.4846  0.1202  0.5751  

Max ARE (%)  1.4956  1.3780  0.3170  1.5598  

Polynomial 

regression 

2
R  0.9746  0.9781  0.9972  0.9977  

AARE (%)  0.7072  0.7199  0.2539  0.5310  
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Max ARE (%)  1.8763  1.6405  0.7433  0.9553  

 
Fig. 2 The variations of material constants with true strain 
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Fig. 3 Comparison of experimental and predicted flow stress at different strain rates

Table 5 Validation results of surrogates at strain rate 0.01
1

s


 

Model  Metric  1173 K  1273 K  1373 K  1473 K  

Regression Kriging 

2
R  0.9680  0.8300  0.5393  0.7098  

AARE (%)  0.7559  3.2476  6.5521  5.0033  

Max ARE (%)  2.2163  8.1439  9.3627  13.2357  

Polynomial regression 

2
R   0.7771  0.7074  0.7035  0.7282  

AARE (%)  2.1025  4.5691  5.1251  5.0451  

Max ARE (%)  4.3478  9.2466  7.9545  12.7778  

 

Table 6 Validation results of surrogates at strain rate 0.1
1

s


 

Model  Metric  1173 K  1273 K  1373 K  1473 K  

Regression Kriging 

2
R  0.0362  0.5014  0.4634  0.6673  

AARE (%)  5.2867  4.0067  6.3767  8.8093  

Max ARE (%)  7.3012  5.1075  19.8601  16.5943  

Polynomial regression 

2
R   0.5356  0.7986  0.2832  0.6493  

AARE (%)  3.5874  2.5276  8.0881  9.1843  

Max ARE (%)  6.3658  4.2611  21.0657  16.8492  

 

Table 7 Validation results of surrogates at strain rate 1
1

s


 

Model  Metric  1173 K  1273 K  1373 K  1473 K  

Regression Kriging 

2
R  0.8543  0.8009  0.1055  0.8813  

AARE (%)  1.5538  2.1153  4.3735  1.6554  

Max ARE (%)  6.8283  7.8390  12.0981  4.0348  

Polynomial regression 

2
R   0.8376  0.6830  0.4690  0.9156  

AARE (%)  2.0477  3.0215  2.8236  1.4091  

Max ARE (%)  6.2797  7.0077  11.4833  3.6286  

 

Table 8 Validation results of surrogates at strain rate 10
1

s


 

Model  Metric  1173 K  1273 K  1373 K  1473 K  

Regression Kriging 

2
R  0.7645  0.8134  0.7096  -0.3309  

AARE (%)  3.2959  2.8808  3.8241  8.6704  

Max ARE (%)  6.9899  14.0143  22.8060  10.5659  

Polynomial regression 2
R   0.8617  0.8143  0.6670  0.8554  
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AARE (%)  2.5867  2.5135  3.4838  2.7553  

Max ARE (%)  8.2041  15.4619  26.4315  4.2273  

0.9972 and 
2

R  is 0.9945, which implies good prediction 

capability. On the contrary, the numerical validation 

results by the proposed validation scheme summarized in 

Tables 5 to 8 are relatively inferior. Note that neither 

polynomial regression nor regression Kriging is 

noticeably exceptional to the other. The individual 

validation results in Tables 5 to 8 imply that the 

constructed Arrhenius-type flow stress models in Ref. [5] 

seemed fairly accurate overall, but they would actually 

result in large prediction errors when they are utilized at a 

certain temperature and strain rate condition. 

 
5. Conclusion 

 
To effectively incorporate strain into the Arrhenius-

type constitutive equation, we leveraged regression 

Kriging as an alternative to other widely used regression 

technology, such as polynomial regression and artificial 

neural networks (ANNs). In addition, we employed 

validation procedures to thoroughly examine the goodness 

of prediction models not only for material constants but 

also flow stress. For illustration, we applied regression 

Kriging to the published data of 70Cr3Mo steel in Ref. [5] 

and compared the prediction results of regression Kriging 

to those of polynomial regression.  

For function approximation, regression Kriging relies 

on a basis that is determined by given data, whereas 

polynomial regression sticks to the predetermined 

monomial basis. As a result, regression Kriging tends to 

capture nonlinear behavior better than polynomial 

regression. For instance, regression Kriging demonstrated 

more accurate predictions than polynomial regression for 

relatively nonlinear material constants, such as Q  and 

ln A . For flow stress model validation, we handled each 

set of flow stress data separately because one is typically 

concerned about flow stress prediction at a particular 

temperature and strain rate of interest. The proposed 

validation scheme showed that the ostensibly acceptable 

prediction analysis in Ref. [5] is actually misleading.  

Although the regression models of the material 

constants were trustworthy, the Arrhenius-type flow stress 

equations exhibited considerable prediction errors with 

both of the two regression techniques. Perhaps strain 

compensation alone is not sufficient for an Arrhenius-type 

constitutive model, and one may need to adjust the Zener-

Hollomon parameter for better prediction. 
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