• 제목/요약/키워드: Model validation

검색결과 3,188건 처리시간 0.031초

합류하는 두 항공기간 도착순서 결정에 대한 로지스틱회귀 예측 모형 (Prediction Model with a Logistic Regression of Sequencing Two Arrival Flows)

  • 정소연;이금진
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.42-48
    • /
    • 2015
  • This paper has its purpose on constructing a prediction model of the arrival sequencing strategy which reflects the actual sequencing patterns of air traffic controllers. As the first step, we analyzed a pair-wise sequencing of two aircraft entering TMA from different entering points. Based on the historical trajectory data, several traffic factors such as time, speed and traffic density were examined for the model. With statistically significant factors, we constructed a prediction model of arrival sequencing through a binary logistic regression analysis. With the estimated coefficients, the performance of the model was conducted through a cross validation.

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

Robust varying coefficient model using L1 regularization

  • Hwang, Changha;Bae, Jongsik;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.1059-1066
    • /
    • 2016
  • In this paper we propose a robust version of varying coefficient models, which is based on the regularized regression with L1 regularization. We use the iteratively reweighted least squares procedure to solve L1 regularized objective function of varying coefficient model in locally weighted regression form. It provides the efficient computation of coefficient function estimates and the variable selection for given value of smoothing variable. We present the generalized cross validation function and Akaike information type criterion for the model selection. Applications of the proposed model are illustrated through the artificial examples and the real example of predicting the effect of the input variables and the smoothing variable on the output.

Feature selection in the semivarying coefficient LS-SVR

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.461-471
    • /
    • 2017
  • In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

대용량 포미장치 피로시험기의 충격 거동 모델링 (A Study of Dynamic Impact Models for Pile-Driver Breech Fatigue Testing System)

  • 조창기;차기업
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.511-519
    • /
    • 2010
  • This paper presents the modeling and validation of a pile-driver breech fatigue testing system model to replicate actual high pressure in a large caliber gun barrel. A hysteresis damping function was incorporated in the nonlinear impact force model. Test of real pile-driver breech fatigue testing system had been performed for model validation. Comparison of the experimental result and model simulation during impact were made. Numerical studies were performed to evaluate how the actual chamber pressure pattern in the live firing of gun barrel was affected by parameters' variation. Some of the parameters simulated included input velocity, damping coefficient and stiffness. As a result, a variety of actual chamber pressure pattern could be reproduced and controlled through current simulation model.

Novel nomogram-based integrated gonadotropin therapy individualization in in vitro fertilization/intracytoplasmic sperm injection: A modeling approach

  • Ebid, Abdel Hameed IM;Motaleb, Sara M Abdel;Mostafa, Mahmoud I;Soliman, Mahmoud MA
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권2호
    • /
    • pp.163-173
    • /
    • 2021
  • Objective: This study aimed to characterize a validated model for predicting oocyte retrieval in controlled ovarian stimulation (COS) and to construct model-based nomograms for assistance in clinical decision-making regarding the gonadotropin protocol and dose. Methods: This observational, retrospective, cohort study included 636 women with primary unexplained infertility and a normal menstrual cycle who were attempting assisted reproductive therapy for the first time. The enrolled women were split into an index group (n=497) for model building and a validation group (n=139). The primary outcome was absolute oocyte count. The dose-response relationship was tested using modified Poisson, negative binomial, hybrid Poisson-Emax, and linear models. The validation group was similarly analyzed, and its results were compared to that of the index group. Results: The Poisson model with the log-link function demonstrated superior predictive performance and precision (Akaike information criterion, 2,704; λ=8.27; relative standard error (λ)=2.02%). The covariate analysis included women's age (p<0.001), antral follicle count (p<0.001), basal follicle-stimulating hormone level (p<0.001), gonadotropin dose (p=0.042), and protocol type (p=0.002 and p<0.001 for short and antagonist protocols, respectively). The estimates from 500 bootstrap samples were close to those of the original model. The validation group showed model assessment metrics comparable to the index model. Based on the fitted model, a static nomogram was built to improve visualization. In addition, a dynamic electronic tool was created for convenience of use. Conclusion: Based on our validated model, nomograms were constructed to help clinicians individualize the stimulation protocol and gonadotropin doses in COS cycles.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가 (Evaluation of the Tank Model Optimized Parameter for Watershed Modeling)

  • 김계웅;송정헌;안지현;박지훈;전상민;송인홍;강문성
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm

  • Ye Ra Choi;Soon Ho Yoon;Jihang Kim;Jin Young Yoo;Hwiyoung Kim;Kwang Nam Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권3호
    • /
    • pp.226-233
    • /
    • 2023
  • Background: Inactive or old, healed tuberculosis (TB) on chest radiograph (CR) is often found in high TB incidence countries, and to avoid unnecessary evaluation and medication, differentiation from active TB is important. This study develops a deep learning (DL) model to estimate activity in a single chest radiographic analysis. Methods: A total of 3,824 active TB CRs from 511 individuals and 2,277 inactive TB CRs from 558 individuals were retrospectively collected. A pretrained convolutional neural network was fine-tuned to classify active and inactive TB. The model was pretrained with 8,964 pneumonia and 8,525 normal cases from the National Institute of Health (NIH) dataset. During the pretraining phase, the DL model learns the following tasks: pneumonia vs. normal, pneumonia vs. active TB, and active TB vs. normal. The performance of the DL model was validated using three external datasets. Receiver operating characteristic analyses were performed to evaluate the diagnostic performance to determine active TB by DL model and radiologists. Sensitivities and specificities for determining active TB were evaluated for both the DL model and radiologists. Results: The performance of the DL model showed area under the curve (AUC) values of 0.980 in internal validation, and 0.815 and 0.887 in external validation. The AUC values for the DL model, thoracic radiologist, and general radiologist, evaluated using one of the external validation datasets, were 0.815, 0.871, and 0.811, respectively. Conclusion: This DL-based algorithm showed potential as an effective diagnostic tool to identify TB activity, and could be useful for the follow-up of patients with inactive TB in high TB burden countries.

Development and Validation of a Breast Cancer Risk Prediction Model for Thai Women: A Cross-Sectional Study

  • Anothaisintawee, Thunyarat;Teerawattananon, Yot;Wiratkapun, Cholatip;Srinakarin, Jiraporn;Woodtichartpreecha, Piyanoot;Hirunpat, Siriporn;Wongwaisayawan, Sansanee;Lertsithichai, Panuwat;Kasamesup, Vijj;Thakkinstian, Ammarin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6811-6817
    • /
    • 2014
  • Background: Breast cancer risk prediction models are widely used in clinical practice. They should be useful in identifying high risk women for screening in limited-resource countries. However, previous models showed poor performance in derived and validated settings. Therefore, we aimed to develop and validate a breast cancer risk prediction model for Thai women. Materials and Methods: This cross-sectional study consisted of derived and validation phases. Data collected at Ramathibodi and other two hospitals were used for deriving and externally validating models, respectively. Multiple logistic regression was applied to construct the model. Calibration and discrimination performances were assessed using the observed/expected ratio and concordance statistic (C-statistic), respectively. A bootstrap with 200 repetitions was applied for internal validation. Results: Age, menopausal status, body mass index, and use of oral contraceptives were significantly associated with breast cancer and were included in the model. Observed/expected ratio and C-statistic were 1.00 (95% CI: 0.82, 1.21) and 0.651 (95% CI: 0.595, 0.707), respectively. Internal validation showed good performance with a bias of 0.010 (95% CI: 0.002, 0.018) and C-statistic of 0.646(95% CI: 0.642, 0.650). The observed/expected ratio and C-statistic from external validation were 0.97 (95% CI: 0.68, 1.35) and 0.609 (95% CI: 0.511, 0.706), respectively. Risk scores were created and was stratified as low (0-0.86), low-intermediate (0.87-1.14), intermediate-high (1.15-1.52), and high-risk (1.53-3.40) groups. Conclusions: A Thai breast cancer risk prediction model was created with good calibration and fair discrimination performance. Risk stratification should aid to prioritize high risk women to receive an organized breast cancer screening program in Thailand and other limited-resource countries.