• Title/Summary/Keyword: Model input parameter

검색결과 694건 처리시간 0.028초

ARMAX 모델의 매개변수 추정을 위한 최적 입력 신호의 설계 (Design of the Optimal Input Singals for Parameter Estimation in the ARMAX Model)

  • 이석원;양흥석
    • 대한전기학회논문지
    • /
    • 제37권3호
    • /
    • pp.180-185
    • /
    • 1988
  • This paper considers the problem of the optimal input design for parameter estimtion in the ARMAX model in which the system and noise transfer function have the common denominator polynomial. Deriving the information matrix, in detail, for the assumed model structure and using the autocorrelation functin of the filtered input as design variables, it is shown that D-optimal input signal can be realized as an autoregressive moving average process. Computer simulations are carried out to show the standard-deviation reduction in the parameter estimtes using the optimal input signal.

  • PDF

기술상호효과분석의 입력변수 추정 난이도 경감을 위한 입력변수 설정모형의 설계 (Designing an Input Parameters Setting Model for Reducing the Difficulty of Input Parameters Estimations in Cross Impact Analysis)

  • 전정철;권철신
    • 한국경영과학회지
    • /
    • 제42권2호
    • /
    • pp.35-48
    • /
    • 2017
  • As the technology convergence paradigm emerges, the need for "CIA techniques" to analyze the mutual effects of technology is increasing. However, since the CIA input parameter estimation is difficult, the present study suggests a "CIA input parameter setting model" to alleviate the difficulty of CIA input parameter estimation. This paper is focused on the difference of measurement difficulty by each scale which expert's estimation behavior was defined as measurement activity quantifying the judgment of future technology. Therefore, this model is designed to estimate the input variable as a sequence or isometric scale that is relatively easy to measure, and then converts it into a probability value. The input parameter setting model of the CIA technique consists of three sub-models : 'probability value derivation model', 'influence estimation model', and 'impact value calculation model', in order to develop a series of models the Thurstone V model, Regression Analysis, etc has been used.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

선체구조 특징형상 정의에 의한 2D 도면에서 3D STEP 선체 모델의 생성 (Generation of 3D STEP Model from 2D Drawings Using Feature Definition of Ship Structure)

  • 황호진;한순흥;김용대
    • 한국CDE학회논문집
    • /
    • 제8권2호
    • /
    • pp.122-132
    • /
    • 2003
  • STEP AP218 has a standard schema to represent the structural model of a midship section. While it helps to exchange ship structural models among heterogeneous automation systems, most shipyards and classification societies still exchange information using 2D paper drawings. We propose a feature parameter input method to generate a 3D STEP model of a ship structure from 2D drawings. We have analyzed the ship structure information contained in 2D drawings and have defined a data model to express the contents of the drawing. We also developed a QUI for the feature parameter input. To translate 2D information extracted from the drawing into a STEP AP2l8 model, we have developed a shape generation library, and generated the 3D ship model through this library. The generated 3D STEP model of a ship structure can be used to exchange information between design departments in a shipyard as well as between classification societies and shipyards.

Input-Output Feedback Linearizing Control with Parameter Estimation Based On A Reduced Design Model

  • Non, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.110-110
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is and uncertain time-variant system. Control synthesis based on a reduced design model is a combined form of a time-variant input-output linearization with parameter estimation. The parameter estimation is also based on the design model and it gives the parameter estimates such that the estimated outputs follow the actual outputs in a specified way. The disturbances form disturbance model and as well all the other uncertainties affecting the outputs will be reflected into the estimated parameters used in the linearizing control law.

  • PDF

자동 공조설비의 고장 검출 기술 (Fault Detection in an Automatic Central Air-Handling Unit)

  • 이원용;신동열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF

적응추정자에 대한 파라메터 수렴속도의 해석 (Analysis of the Parameter Convergence Rate for an Adaptive Identifier)

  • Kim, Sung-Duck
    • 대한전기학회논문지
    • /
    • 제38권2호
    • /
    • pp.127-136
    • /
    • 1989
  • This paper describes the parameter convergence properties of an adaptive system to identify a single-input single-output plant model. It is demonstrated that, by using power spectrum analysis, the persistency of excitation (PE) condition in order to guarantee the exponential stability of the adaptive control system can be transformed into the positive definite behavior for the auto-correlation function matrix of adaptive signal. The existence of parameter nominal values can be analyzed by this condition and the convergence rates of parameter are determined by examining the auto-correlation function. We may use the sufficient richness (SR) of input spectrum instead of the PE condition to analyze the parameter boundedness. It can be shown that the eigen values of the auto-correlation function are always related with adaptive gain, input amplitude and positions or numbers of input spectra. In each case, the variation of parameter convergence rate can be also verified.

  • PDF

시간영역에서의 다중 입력-출력시스템의 모드매개변수 추정방법 (A Time Domain Modal Parameter Estimation Method for Multiple Input-Output Systems)

  • 이건명
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1997-2004
    • /
    • 1994
  • A model analysis method has been developed in the paper. The method estimates the modal parameters of multiple input-output systems, assesses their quality, and seperates structural modes form computation ones. The modal parameter extraction algorithm is the least squares method with a finite difference model relating input and output time data. The quality of the estimated system model can be assessed in narrow frequency bands by comparing the measured and model predicted responses in time domain with the aid of digital filters. Structural modes can be effectively separated from computational ones using the convergence factor which represents the pole convergence rate. The modal analysis method has been applied to simulated and experimental vibration data to evaluate its utility and limitations.

선형계통의 파라미터 추정을 위한 최적 입력의 설계 (Design of the optimal inputs for parameter estimation in linear dynamic systems)

  • 양흥석;이석원;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.73-77
    • /
    • 1986
  • Optimal input design problem for linear regression model with constrained output variance has been considered. It is shown that the optimal input signal for the linear regression model can also be realized as an ARMA process. Monte-Carlo simulation results show that the optimal stochastic input leads to comparatively better estimation accuracy than white input signal.

  • PDF