• Title/Summary/Keyword: Model Uncertainties

Search Result 1,301, Processing Time 0.03 seconds

Sliding Mode Control for an Active Magnetic Bearing System (능동자기베어링계를 위한 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes an application of sliding mode control to an active magnetic bearing(AMB) system. A sliding mode control is robust to model uncertainties and external disturbances. To ensure the authority of sliding mode control, model parameter uncertainties caused from linearization of electro-magnetic attractive force are analyzed and a domain of parameter uncertainties in which reachability to sliding surface is guaranteed is derived. The validity of the analysis is illustrated along with some simulation examples.

A Corner Matching Algorithm with Uncertainty Handling Capability

  • Lee, Kil-jae;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.228-233
    • /
    • 1997
  • An efficient corner matching algorithm is developed to minimize the amount of calculation. To reduce the amount of calculation, all available information from a corner detector is used to make model. This information has uncertainties due to discretization noise and geometric distortion, and this is represented by fuzzy rule base which can represent and handle the uncertainties. Form fuzzy inference procedure, a matched segment list is extracted, and resulted segment list is used to calculate the transformation between object of model and scene. To reduce the false hypotheses, a vote and re-vote method is developed. Also an auto tuning scheme of the fuzzy rule base is developed to find out the uncertainties of features from recognized results automatically. To show the effectiveness of the developed algorithm, experiments are conducted for images of real electronic components.

  • PDF

Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network (웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

Robust Control of Planar Biped Robots in Single Support Phase Using Intelligent Adaptive Backstepping Technique

  • Yoo, Sung-Jin;Park, Jin-Rae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • This paper presents a robust control method via the intelligent adaptive backstepping design technique for stable walking of nine-link biped robots with unknown model uncertainties and external disturbances. In our control structure, the self recurrent wavelet neural network(SRWNN) which has the information storage ability is used to observe the uncertainties of the biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Also, we prove that all signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer simulations of a nine-link biped robot with model uncertainties and external disturbances, we illustrate the effectiveness of the proposed control system.

Robust output feedback control of LTI system using estimated output derivatives (출력 미분값의 추정에 의한 선형 시불변 시스템의 로버스트 출력 궤환 제어)

  • Lee, Gun-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.273-282
    • /
    • 1996
  • This work is conceded with the estimation of output derivatives and their use for the design of robust controller for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties and known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted through restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Control)type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Robust production and transportation planning for TFT-LCD industry under demand and price uncertainties using scenario model (시나리오 모델을 활용한 수요 및 가격 불확실성이 존재하는 TFT-LCD 산업에서의 Robust 생산 및 수송계획)

  • Shin, Hyun-Joon;Ru, Jae-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3304-3310
    • /
    • 2010
  • This study solves the decision making problems for TFT-LCD manufacturing supply chain with demand and price uncertainties by establishing robust production and distribution strategies. In order to control the decisions regarding production graded by quality, inventory level and distribution, this study develop scenario model based stochastic mixed integer linear programs (SMILPs) that consider demand and price uncertainties as well as realistic constraints such as capacities etc. The performance of the solution obtained from the SMILPs using robust algorithms will be evaluated through various scenarios.

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam (물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델)

  • Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.

Probabilistic Reliability Based Grid Expansion Planning of Power System Including Wind Turbine Generators

  • Cho, Kyeong-Hee;Park, Jeong-Je;Choi, Jae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.698-704
    • /
    • 2012
  • This paper proposes a new methodology for evaluating the probabilistic reliability based grid expansion planning of composite power system including the Wind Turbine Generators. The proposed model includes capacity limitations and uncertainties of the generators and transmission lines. It proposes to handle the uncertainties of system elements (generators, lines, transformers and wind resources of WTG, etc.) by a Composite power system Equivalent Load Duration Curve (CMELDC)-based model considering wind turbine generators (WTG). The model is derived from a nodal equivalent load duration curve based on an effective nodal load model including WTGs. Several scenarios are used to choose the optimal solution among various scenarios featuring new candidate lines. The characteristics and effectiveness of this simulation model are illustrated by case study using Jeju power system in South Korea.

Observer-based Feedback Controller Design for Robust Tracking of Discrete-time Polytopic Uncertain LTI Systems

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2427-2433
    • /
    • 2015
  • This paper presents an observer-based robust controller for constant reference tracking of linear time invariant systems with polytopic model uncertainties. To this end, this paper not only designs a robust integral controller gain but also suggests how to determine the robust observer gain and the observer model used in the observer. Since the observer model selection is not obvious due to the polytopic uncertainties, particular attention needs to be paid to that. This paper computes the robust controller and observer gains first. Then, the observer model is selected in a way that the whole closedloop is stable and LMIs are used in the middle of choosing the gains and observer model. Simulation examples show that the proposed observer-based feedback control successfully achieves robust reference tracking.