We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권3호
/
pp.164-170
/
2013
Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.
In this study, the recognition experiments for Korean vowel are performed using peripheral auditory model. In addition, for the purpose of objective comparison, the recognition experiments are performed by extracting LPC cepstrum coefficients for the same speech data. The results are as follows. 1) The time and the frequency responses of the auditory model show that important features of input signal are involved in the responses of inner ear and auditory nerve. 2) The recognition results for Korean vowel show that the recognition rate by auditory model output is higher than the recognition rate by LPC cepstrum coefficients. 3) The adaptation phenomenon of auditory nerve provides useful characteristics for the discrimination of vowel signal.
In this paper a new neural network model, time delayed counterpropagation neural networks (TDCPN) which have high recognition rate and short total learning time, is proposed for electromyogram(EMG) recognition. Signals the proposed model increases the recognition rates after learned the regional temporal correlation of patterns using time delay properties in input layer, and decreases the learning time by using winner-takes-all learning rule. The ouotar learning rule is put at the output layer so that the input pattern is able to map a desired output. We test the performance of this model with EMG signals collected from a normal subject. Experimental results show that the recognition rates of the suggested model is better and the learning time is shorter than those of TDNN and CPN.
In this paper, we propose a neural network model for speech recognition. The model consists of feature extraction parts and recognition parts. The interconnection model based on ${\Delta}^2$G operator was used for frequency analysis. Two features, global feature and local feature, were extracted from this model. Recognition parts consist of global grouping stage and local grouping stage. When the input pattern was coded by slope method, the recognition rate of speakers, A and B, was 100%. When the test was performed with the data of 9 speakers, the recognition rate of 91.4% was obtained.
International Journal of Advanced Culture Technology
/
제7권4호
/
pp.229-235
/
2019
Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.
Recent years with the development of artificial intelligence and the success of the deep model, they have been deployed in all fields of computer vision. Action recognition, as an important branch of human perception and computer vision system research, has attracted more and more attention. Action recognition is a challenging task due to the special complexity of human movement, the same movement may exist between multiple individuals. The human action exists as a continuous image frame in the video, so action recognition requires more computational power than processing static images. And the simple use of the CNN network cannot achieve the desired results. Recently, the attention model has achieved good results in computer vision and natural language processing. In particular, for video action classification, after adding the attention model, it is more effective to focus on motion features and improve performance. It intuitively explains which part the model attends to when making a particular decision, which is very helpful in real applications. In this paper, we proposed a 3D dense convolutional network based on attention mechanism(ADD-Net), recognition of human motion behavior in the video.
어휘 인식 시스템은 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타나며, 기존의 시스템은 벡터 값을 모델로 만들어 데이터베이스로 구성하여 어휘 인식에 사용하였다. 어휘 인식을 위한 탐색 중에 형성되는 모델은 데이터베이스로 구성되어 있지 않아 인식할 수 없는 단점이 존재한다. 따라서 본 논문에서는 특징 벡터 모델을 기반으로 바타챠랴 거리 측정법을 이용한 베이시안 인식 모델을 구성하여 탐색 중에 형성되는 벡터 모델을 인식할 수 있도록 유도하였으며, 위너 필터를 적용하여 인식률을 향상시켰다. 2 방법을 융합하여 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 측정법을 이용하여 기존의 방법들에 비하여 평균 98.2%의 성능을 나타내었다.
인식 대상 학습 모델이 분류되어 있지 않거나 명확하게 분류되지 않은 경우 어휘 인식을 결정하지 못하여 인식률이 저하되며 학습 모델 분류 형태가 변경되거나 새로운 학습 모델이 추가되면 인식 모델의 결정 트리 구조가 변경되어야 하는 구조적 문제가 발생한다. 이러한 문제점을 해결하기 위하여 학습 모델 분류를 위한 결정 트리 학습 알고리즘을 제안한다. 음운 현상이 충분히 반영된 음성 데이터베이스를 구성하고 학습 효과를 확보하기 위하여 학습 모델 분류를 위한 결정 트리 방법을 사용하였다. 본 연구에서는 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.
In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.