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Abstract

Recent years have been higher demands for automatic speech recognition (ASR) systems
that are able to operate robustly in an acoustically noisy environment. This paper proposes
an improved product hidden markov model (HMM) used for bimodal speech recognition.
A two-dimensional training model is built based on dependently trained audio-HMM and
visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A
weight coefficient is introduced to adjust the weight of the video and audio streams auto-
matically according to differences in the noise environment. Experimental results show that
compared with other bimodal speech recognition approaches, this approach obtains better
speech recognition performance.
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1. Introduction

Speech recognition technology has made great progress in recent decades, and automatic
speech recognition (ASR) systems have become increasingly widespread. Since an ASR
system is vulnerable to speech noise, and since almost all voice signals contain noise, ASR
identification performance using only audio information cannot meet the need. Therefore,
developing a robust speech recognition system in a noisy environment is an urgent problem.
Developing an integration strategy for audio and visual information is one of the many
challenges facing an audio-visual (bimodal) ASR system. From the point of view of perception,
video information corresponding to audio information can improve a person’s understanding of
a speaker’s voice. In a noisy environment or for hearing-impaired listeners, video information
is a useful complement.

Generally, the audio-visual ASR (AVSR) systems work by the following procedures. First,
the acoustic and the visual signals of speech are recorded by a microphone and a camera,
respectively. Then, each signal is converted into an appropriate form of compact features.
Finally, the two modalities are integrated for recognition of the given speech. Integration of
acoustic and visual information aims at obtaining as good recognition results as possible in
noisy circumstances. It can take place either before the two information sources are processed
by a recognizer early integration (EI) or after they are classified independently late integration
(LI). LI has been shown to be preferable because of its better performance and robustness than
EI [1], and psychological supports [2].
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Considering the asynchronous nature of speech signal and
video signal, we put forward an improved product hidden
Markov model (HMM) in this paper, used for implementing
the bimodal voice recognition of Chinese words, which formu-
late an improved HMM as a multi-stream HMM. Moreover,
we control the stream weights of the audio-visual HMM by
the generalized Pareto distribution (GPD) algorithm [1, 3], in
order to adaptively optimize the audio-visual ASR. According
to the corresponding relation between the weight coefficient
and instantaneous signal-to-noise ratio (SNR), it can adjust the
weight ratio of audio stream and video stream adaptively.

Experimental results demonstrate that the importance of au-
dio features is far higher than that of video features in a quiet
environment, while in the presence of noise, video features
make an important contribution to speech recognition [4-6].

In Section 2, we introduce some related research works about
speech recognition technology. In Section 3, we introduce
the classical speech feature parameter extraction approach. In
Section 4, we put forward our improved HMM, and, in Section
5, we present our weight optimization approach based on the
GDP algorithm. In Section 6, we implement our improved
bimodal product HMM system, and, show some experiment
results between other ASR systems and the improved HMM.
Section 7 is conclusion and our future work.

2. Related Works

In speaker recognition, features are extracted from speech sig-
nals to form feature vectors, and statistical patter n recognition
methods are applied to model the distribution of the feature
vectors in the feature space. Speakers are recognized by pattern
matching of the statistical distribution of their feature vectors
with target models. Speaker verification (SVR) is the task of
deciding, upon receiving tested feature vectors, whether to ac-
cept or reject a speaker hypothesis, according to the speaker’s
model. Mel-frequency cepstral coefficients (MFCC) [7] are a
popular feature-extraction method for speech signal processing,
and Gaussian mixture models (GMM) have become a dominant
approach for statistical modeling of speech feature vectors for
text-independent SVR [8].

A recently developed method for overcoming model mis-
match is to use a reverberant speech database for training tar-
get models [9]. This method was tested on an adaptive-GMM
(AGMM)-based SVR system [10] with reverberant speech, with
various values of reverberation time (RT). Matching of RT be-
tween training and testing data was reported to reduce the equal-

error rate (EER) from 16.44% to 9.9%, on average, when using
both Z-norm and T-norm score normalizations. However, the
study in [9] did not investigate the effect of GMM order on
SVR performance under reverberation conditions. In fact, it
may be difficult to find such research studies on this effect in
the literature.

The audio and visual fusion techniques investigated in pre-
vious work include feature fusion, model fusion, or decision
fusion. In feature fusion, the combined audio-visual feature vec-
tors are obtained by the concatenation of the audio and visual
features, followed by a dimensionality reduction transform [11].
The resulting observation sequences are then modeled using
one HMM [12]. A model fusion system based on multi-stream
HMM was proposed in [13]. The multi-stream HMM assumes
that audio and video sequences are state synchronous but allows
the audio and video components to have different contribution
to the overall observation likelihood. However, it is well known
that the acoustic features of speech are delayed from the visual
features of speech, and assuming state synchronous models
can be inaccurate. We proposed an audio visual bimodal that
uses a product HMM. The audio visual product HMM can be
seen as an extension of the multi-stream HMM that allows for
audio-video state asynchrony. Decision fusion systems model
independently the audio and video sequences using two HMMs,
and combine the likelihood of each observation sequence based
on the reliability of each modality [11].

3. Speech Feature Parameter Extraction

3.1 Audio Feature Extraction

The normalized energy, MFCC and linear predictive cepstrum
coefficients (LPCC) of speech describe the prosodic features,
timbre features and perceived features, respectively, so they are
selected as audio feature parameters in this paper.

The MFCC computation formula is as follows:

MFCC (t, i) =

√
2

N

N∑
j=1

lg [Emel (t, j)] cos[i (j−0.5)
π

N
]

(1)
where N is the number of triangular filters; Emel(t,j) is the
output energy for the j−th filter at t time, {MFCC(t,i)}i=1,2,...,p

is the corresponding MFCC parameters at t time, and P of
{MFCC(t,i)}i=1,2,...,p is order.

The LPCC computation formula is as follows:
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Figure 1. Mouth parameters.

LPCC (t, i) =LPC (t, i)

+

i−1∑
k=1

k−i
i

LPCC (t, i− k) LPC(t, k)
(2)

where LPC (t, k) is the k−thlinear prediction coefficient at time
t, {LPCC(t,i)}i=1,2,...,p is the corresponding LPCC parameters
at time t, and P of {LPCC(t,i)}i=1,2,...,p is order.

3.2 Video Feature Extraction

We select lip parameters as video features, a segment video
image using a two-dimensional fast thresholding segmentation
algorithm, and lip feature extraction parameters [14], as shown
in Figure 1, where x is the distance from the labial center line
to the edge, u0 and d0 are the heights of the upper and lower
halves, respectively, of the mouth centerline, and u1,d1,u2,d2

are the respective heights of the corresponding x-third point.
The original lip parameter is vt= [x, u0, d0, u1, d1, u2, d2] for
the image frame at t time.

4. Improved Product HMM

Auditory and visual features have some synchronicity, with
some asynchrony within a certain range. When people talk,
mouth movement has already begun before the voice, and it
takes time to close the mouth and return to the natural state after
the voice, so visual information is usually ahead of auditory
information by about 120 ms [15], which is close to the average
duration of a phoneme.

Therefore, asynchrony can be permitted in the auditory and
visual training model. This paper proposes an improved product
HMM model based on the product HMM method. For Chinese
words recognition, which usually corresponds to five or six
states, only one state migration is allowed between the audio
and video streams as a result of the presence of asynchrony.
Figure 2 shows the HMM model for the audio and video streams,
and Figure 3 shows the topology of the corresponding product

audio stream 

 

 

video stream 

Figure 2. Double stream hidden Markov model model for word
speech recognition (⊗ is synchronization point).
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Figure 3. Topological structure of the proposed product hidden
Markov model.

HMM model.

We extract the video features and audio features during the
training stage. Generally speaking, the frame rate of the pho-
netic features is higher than the frame rate of the video features,
so we use interpolation for them after video-feature extraction
in order to ensure training synchronicity in the data flow.

A bimodal speech feature vector consists of the observa-
tion vectors of audio features and video features. According
to Bayes’ theorem, the classification result for the maximum
posterior probability is

W ∗=argmax
W

P (W |Oa, Ov ) =
P (Oa, Ov |W )P (W )

P (Oa, Ov)
(3)

where W denotes some word and Oa and Ovdenote the vec-
tor sequence of audio and video features, respectively; if they
are independent of each other, the joint output probability is
P (Oa, Ov) = P (Oa |W) P (Ov |W).

A multiple-model method needs to combine the audio and
video streams in terms of formulas. For the improved product
HMM method, we assume that the audio and video streams are
conditionally independent, so observation vector and transition
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probabilities at t time are

Ot=Oat ⊗Ovt (4)

aim,jn=aaij × avmn (5)

where aaij is the transition probability from state i to state j
among the audio HMM and avmn is the transition probability
from state m to state n in the video HMM. The output probabil-
ity of state ij is

Pij (Oa, Ov |W ) =Pi(O
a|W a)

λ
Pj(O

v|W v)
1−λ (6)

The weight coefficient λ (0 < λ < 1) reflects the different
weights of the two modes, which depend on the recognition
performance of each mode under the different noise conditions.
Zhao et al.’s experiments [16] showed the following linear rela-
tionship.

λ = 0.017 · SNR + 0.4 (7)

The weight coefficient is greater (λ > 0.825) when the
speech signal noise is smaller (SNR>25 dB), illustrating that
audio information plays a larger role in the decision-making.
The weight coefficient decreases with an increase of noise, il-
lustrating that the proportion of video information increases
gradually in the decision-making. When SNR = 5 dB, λ ≈ 0.5,
illustrating that they have the same importance at that moment.

5. Weight Optimization Based on the GPD Al-
gorithm

Using the existing training data, based on formula (7), and cal-
culating the weight coefficient according to the GDP algorithm
[17], this training algorithm defines a misclassification distance
that provides the correct distance between the class informa-
tion and other information. The misclassification distance is
computed using a smooth loss function and is minimized.

For a well-trained product HMM model, according to the N-
best recognized hypotheses, supposing x as the unknown word
vector, L(x)

c (λ) as the logarithmic likelihood values of correctly
identifying the x in the model, L(x)

n (λ) as the logarithmic like-
lihood values of the N-best candidate vector of misrecognized
words, the misclassification distance is

d(x) (λ) = −L(x)
c (λ) +lg{ 1

N

N∑
n=1

exp[ηL(x)
n (λ)]}

1
η

(8)

Where η is a smoothing parameter and N is the total candidate

number. The total loss function of x after smoothing is

Lost (λ) =

X∑
x=1

1

1 + exp[−ad(x)(λ)]
, a>0 (9)

The purpose of training is to minimize Lost(λ) so as to mini-
mize the error. The recursive formula of weight is

λk+1=λk−εkUk∇Lost (λ) , k= 1, 2, . . . (10)

The condition is εk>0,
∑∞
k=1 εk=∞ and

∑∞
k=1 ε

2
k<∞. {Uk}

is a finite positive matrix sequence. The algorithm converges as
k→ ∞. The recursion stops, and the final weight is obtained
when the difference of the recursive value is smaller than a
given threshold.

6. Experiment Results and Analysis

6.1 Experiment Dataset

We constructed a bimodal corpus and selected from seven peo-
ple (five for male and two for female). The corpus contains
50 Chinese words, totaling 750 words for the seven people,
including 550 words for training and the others for recogni-
tion. As needed, we added some noises of different intensity
for recognition speech words. The sampling rate of the speech
signal is 22.05 kHz. The quantitative value is 16 bits. The frame
length of the speech frame is 28 ms. The frame shift is 14 ms,
using a Hamming window as the window function. In order
to ensure the synchronization of the video and audio streams
after the extraction of video and audio features, we interpolated
the video features and input these feature parameters into the
improved product HMM, shown as in Figure 4. The video fea-
tures were the lip parameter vt and the dynamic parameter vt,
totaling 14 dimensions. To determine the final scheme of the
audio features, we preselected three sets of features as follows:

(1) MFCC feature: MFCC (14 dimensions) + ∆MFCC (14
dimensions) + normalized audio energy, totaling 29 dimen-
sions;

(2) LPCC feature: LPCC (14 dimensions) + ∆LPCC (14 dimen-
sions) + normalized audio energy, totaling 29 dimensions;

(3) MFCC-LPCC joint feature: MFCC (14 dimensions) +
∆MFCC (14 dimensions) + LPCC (14 dimensions) +
∆LPCC (14 dimensions) + normalized audio energy, to-
taling 57 dimensions.
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Figure 4. Proposed bimodal speech recognition process.

Table 1. Bimodal speech recognition rate of audio feature parameters
for different SNR

SNR/dB MFCC
feature

LPCC
feature

MFCC-LPCC
joint feature

5 58.8 53.5 62.4

20 73.6 70.1 78.9

Clean 90.5 85.7 93.8

SNR, signal-to-noise ratio; MFCC, Mel-frequency cepstral co-
efficient; LPCC, linear predictive cepstrum coefficient.

6.2 Experiment Results

Under different SNR conditions, according to the recognition
result (Table 1), we selected the MFCC-LPCC joint feature to
train modal and recognize speech.

The convergence performance of the GPD algorithm depends
on the choice of the feature parameters. After many experi-
ments, we set N = 2 in formula (8), α = 0.1 in formula (9),
εk = 50/k in formula (10), and convergence threshold Tc=
0.01. The recursion stopped when the recursive interpolation
∇W=Wk+1−Wk< Tc.

Four speech recognition schemes were proposed for compar-
ing the bimodal speech recognition performance of the different
methods.

(1) For the single-modal speech recognition of the audio, the
single audio model adopts the classical left-to-right no-cross
HMM modal [18]. Considering that the training objects are
Chinese words, five or six states are selected and the output
probability density function is a four-dimension mixed Gaussian
density distribution. The audio parameters are the aforemen-
tioned 57 dimension MFCC-LPCC joint feature parameters.

(2) Based on the EI model [19], the joint feature vector is
composed of the audio feature vector and video feature vectors,
which are inputted to the single HMM model for training, with
the same modal architecture as in solution (1).
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Figure 5. Speech recognition rate comparison of four solutions for
different signal-to-noise ratios (SNRs).

(3) The multiple HMM model, mixing audio and video fea-
tures on the state layer, assigning different weights to the audio
and video streams according to the principle of formula (6)
[5,6], requires special restrictions so as to maintain synchro-
nization between the video and voice stream.

(4) This solution achieves word recognition through the im-
proved product HMM model (Figure 3) proposed here. Based
on the assumption that the audio and video streams are indepen-
dent of each other, it allows for a step-state deviation between
them.

To facilitate the performance comparison, the audio and
video feature parameters of solutions (2) and (3) are the same
as that of solution (4), and the recognition results are as shown
in Figure 5.

6.3 Result Comparison and Analysis

In a low-noise environment, the difference in the recognition
rate between the single-mode audio recognition method (solu-
tion 1) and the bimodal recognition method (solution 2-solution
4) is not large. When noise increases, the gap in recognition
rate between single-mode and double-mode recognition will
increase. This shows that in high-noise environments, the video
information contributes more to the speech recognition rate.

For the bimodal recognition method, the EI model-based
method did not assign the weights of video and audio infor-
mation dynamically, leading to the lowest recognition rate for
this method among all the bimodal recognition methods. The
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solution 3 in [5] only considered the speech recognition of iso-
lated words, while we consider recognizing Chinese phrases,
increasing the recognition length. In contrast to our method,
[5] used a neural network model, which was slower in actual
speech recognition. Furthermore, [5] did not consider the asyn-
chronous nature of the video and audio signals, but simply used
the weighted fusion of the speech and video streams. Differ-
ent from other methods, the method proposed in this paper
considered the asynchrony, as shown in Figure 5, the speech
recognition rate was slightly higher than in solution 3.

7. Conclusion

In this paper, with the aim of achieving effective speech recog-
nition in noisy environments, a product HMM-based bimodal
speech model allowing a one-step state offset to adapt to the
asynchronous nature of the video signal and audio signal is
proposed.

According to the corresponding relation between the weight
coefficient and instantaneous SNR, the model can adjust the
weight ratio of the audio and video streams adaptively. We
selected a 50 Chinese 2-digit word corpuses as training and
identification data, in contrast to other types of programs. The
result showed that our proposed model can ensure the accuracy
and robustness of speech recognition in a noisy environment.

Although we have shown effectiveness of the proposed bi-
modal HMM method on the Chinese 2-digit word recognition
tasks, this scheme can be extended for multiword or contin-
uous speech recognition tasks. In such cases, it would be a
problem that, from the two modalities, we have unmanageably
many possible word or phoneme sequence hypotheses to be
considered for weighted integration. Also, more complicated
interactions between the modalities can be modeled by using
cross-modal associations and influences, where we still can use
the proposed integration method for adaptive robustness. With
these considerations, further investigation of applying the pro-
posed system to complex tasks such as multiword or continuous
speech recognition is in progress.
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