• Title/Summary/Keyword: Model Equation

Search Result 10,126, Processing Time 0.031 seconds

SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE-FLOW (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, W.G.;Lee, K.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.78-85
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

Numerical Analysis of Cavitation Flow Around Hydrofoils (3차원 수중익형 주위의 캐비테이션 유동 전산해석)

  • Kim, S.H.;Koo, T.K.;Park, W.G.;Kim, D.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as pump, turbine, nozzle, Infector, etc. In the present work, a solver for two-phase flows has been developed and applied to simulate the cavitating flows past hydrofoils. The governing equation is the two-phase Navier-Stokes equation, comprised of the continuity equation of liquid and vapor phase. The momentum and energy equation is in the mixture phase. The solver employs an implicit, dual time, preconditioned algorithm using finite difference scheme in curvilinear coordinates. An experimental data and other numerical data were compared with the present results to validate the present solver. It is concluded that the present numerical code has successfully accounted for two-phase Navier-Stokes model of cavitation flow.

DIRECT COMPARISON STUDY OF THE CAHN-HILLIARD EQUATION WITH REAL EXPERIMENTAL DATA

  • DARAE, JEONG;SEOKJUN, HAM;JUNSEOK, KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-342
    • /
    • 2022
  • In this paper, we perform a direct comparison study of real experimental data for domain rearrangement and the Cahn-Hilliard (CH) equation on the dynamics of morphological evolution. To validate a mathematical model for physical phenomena, we take initial conditions from experimental images by using an image segmentation technique. The image segmentation algorithm is based on the Mumford-Shah functional and the Allen-Cahn (AC) equation. The segmented phase-field profile is similar to the solution of the CH equation, that is, it has hyperbolic tangent profile across interfacial transition region. We use unconditionally stable schemes to solve the governing equations. As a test problem, we take domain rearrangement of lipid bilayers. Numerical results demonstrate that comparison of the evolutions with experimental data is a good benchmark test for validating a mathematical model.

A Comparative Study on the Prediction of Vapor-Liquid Equilibria for the Ethanol-Benzene Mixture between Equation of State Model and Liquid Activity Coefficient Model (비이상적 상거동을 보이는 이성분계 혼합물의 기액 상평형 추산을 위한 상태방정식과 액체 활동도계수 모델 사이의 비교연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1747-1753
    • /
    • 2010
  • In this study, a comparative study was performed to predict the vapor-liquid equilibria with maximum azeotropic pressure for ethanol-benzene binary system between an equation of state model and a liquid activity coefficient model. Peng-Robinson equation of state model with a Panatiotopoulos mixing rules (PRP) was used and NRTL liquid activity coefficient model proposed by Renon was selected. The PRP model, even though it has only two binary adjustable parameters, was not inferior to the NRTL model to predict vapor-liquid equilibria for low pressure region of ethanol-benzene system and showed a better prediction capability for high pressure region of ethanol-benzene system than the NRTL model with three binary interaction parameters.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.949-961
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.

Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai;Choi, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.

Computational analysis of cancer angiogenesis using two dimensional model (2차원 모델을 이용한 암의 혈관생성에 대한 수치적 연구)

  • Shim Eun Bo;Ko Hyung Jong;Deisboeck Thomas
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.709-710
    • /
    • 2002
  • Cancer angiogenesis is simulated using a two dimensional model. Governing equation of angiogenesis is a TAE (Tumor angiogenesis factor) conservation equation in time and space. A stochastic process model is utilized to simulate vessel formation, proliferation, and migration to a cancer pellet. Numerical results are presented especially in case of growing cancer.

  • PDF

hp-DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA-MCKENDRICK EQUATION: A NUMERICAL STUDY

  • Jeong, Shin-Ja;Kim, Mi-Young;Selenge, Tsendanysh
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.623-640
    • /
    • 2007
  • The Lotka-McKendrick model which describes the evolution of a single population is developed from the well known Malthus model. In this paper, we introduce the Lotka-McKendrick model. We approximate the solution to the model using hp-discontinuous Galerkin finite element method. The numerical results show that the presented hp-discontinuous Galerkin method is very efficient in case that the solution has a sharp decay.

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.