• Title/Summary/Keyword: Model Ensemble

Search Result 638, Processing Time 0.029 seconds

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.

Efficient Osteoporosis Prediction Using A Pair of Ensemble Models

  • Choi, Se-Heon;Hwang, Dong-Hwan;Kim, Do-Hyeon;Bak, So-Hyeon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.45-52
    • /
    • 2021
  • In this paper, we propose a prediction model for osteopenia and osteoporosis based on a convolutional neural network(CNN) using computed tomography(CT) images. In a single CT image, CNN had a limitation in utilizing important local features for diagnosis. So we propose a compound model which has two identical structures. As an input, two different texture images are used, which are converted from a single normalized CT image. The two networks train different information by using dissimilarity loss function. As a result, our model trains various features in a single CT image which includes important local features, then we ensemble them to improve the accuracy of predicting osteopenia and osteoporosis. In experiment results, our method shows an accuracy of 77.11% and the feature visualize of this model is confirmed by using Grad-CAM.

Development of Product Recommender System using Collaborative Filtering and Stacking Model (협업필터링과 스태킹 모형을 이용한 상품추천시스템 개발)

  • Park, Sung-Jong;Kim, Young-Min;Ahn, Jae-Joon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.83-90
    • /
    • 2019
  • People constantly strive for better choices. For this reason, recommender system has been developed since the early 1990s. In particular, collaborative filtering technique has shown excellent performance in the field of recommender systems, and research of recommender system using machine learning has been actively conducted. This study constructs recommender system using collaborative filtering and machine learning based on stacking model which is one of ensemble methods. The results of this study confirm that the recommender system with the stacking model is useful in aspects of recommender performance. In the future, the model proposed in this study is expected to help individuals or firms to make better choices.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

A Modeling of Realtime Fuel Comsumption Prediction Using OBDII Data (OBDII 데이터 기반의 실시간 연료 소비량 예측 모델 연구)

  • Yang, Hee-Eun;Kim, Do-Hyun;Choe, Hoseop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This study presents a method for realtime fuel consumption prediction using real data collected from OBDII. With the advent of the era of self-driving cars, electronic control units(ECU) are getting more complex, and various studies are being attempted to extract and analyze more accurate data from vehicles. But since ECU is getting more complex, it is getting harder to get the data from ECU. To solve this problem, the firmware was developed for acquiring accurate vehicle data in this study, which extracted 53,580 actual driving data sets from vehicles from January to February 2019. Using these data, the ensemble stacking technique was used to increase the accuracy of the realtime fuel consumption prediction model. In this study, Ridge, Lasso, XGBoost, and LightGBM were used as base models, and Ridge was used for meta model, and the predicted performance was MAE 0.011, RMSE 0.017.

Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model (통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측)

  • SU MIAO
    • Korea Trade Review
    • /
    • v.48 no.2
    • /
    • pp.27-43
    • /
    • 2023
  • The maritime industry is playing an increasingly vital part in global economic expansion. Specifically, the Baltic Dry Index is highly correlated with global commodity prices. Hence, the importance of BDI prediction research increases. But, since the global situation has become more volatile, it has become methodologically more difficult to predict the BDI accurately. This paper proposes an integrated machine-learning strategy for accurately forecasting BDI trends. This study combines the benefits of a convolutional neural network (CNN) and long short-term memory neural network (LSTM) for research on prediction. We collected daily BDI data for over 27 years for model fitting. The research findings indicate that CNN successfully extracts BDI data features. On this basis, LSTM predicts BDI accurately. Model R2 attains 94.7 percent. Our research offers a novel, machine-learning-integrated approach to the field of shipping economic indicators research. In addition, this study provides a foundation for risk management decision-making in the fields of shipping institutions and financial investment.

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

A multi-dimensional crime spatial pattern analysis and prediction model based on classification

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.272-287
    • /
    • 2021
  • This article presents a multi-dimensional spatial pattern analysis of crime events in San Francisco. Our analysis includes the impact of spatial resolution on hotspot identification, temporal effects in crime spatial patterns, and relationships between various crime categories. In this work, crime prediction is viewed as a classification problem. When predictions for a particular category are made, a binary classification-based model is framed, and when all categories are considered for analysis, a multiclass model is formulated. The proposed crime-prediction model (HotBlock) utilizes spatiotemporal analysis for predicting crime in a fixed spatial region over a period of time. It is robust under variation of model parameters. HotBlock's results are compared with baseline real-world crime datasets. It is found that the proposed model outperforms the standard DeepCrime model in most cases.

An Ensemble Fingerprint Classification System Using Changes of Gradient of Ridge (융선 기울기의 변화량을 이용한 앙상블 지문분류 시스템)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.545-551
    • /
    • 2003
  • Henry System which is a traditional fingerprint classification model is difficult to apply to a modem Automatic Fingerprint Identification System (AFIS). To tackle this problem, this study is to apply algorithm for an An Ensemble Fingerprint Classroom System using changes of gradient of ridge in order to improve precise joining speed of a large volume of database. The existing classification system, Henry System, is useful in a captured fingerprint image of core point and delta point using paper and ink. However, the Henry System is unapplicable in modem Automatic Fingerprint Identification System (AFIS) because of problems such as size of input sensor and way of input. This study is to suggest an Ensemble Fingerprint Classroom System which can classify 5 basic patterns of Henry System in uncaptured delta image using changes of gradient of ridge. The proposed fingerprint classification technique will make an improvement of precise joining speed by reducing data volume.

An Ensemble Method for Latent Interest Reasoning of Mobile Users (모바일 사용자의 잠재 관심 추론을 위한 앙상블 기법)

  • Choi, Yerim;Park, Jonghun;Shin, Dong Wan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.706-712
    • /
    • 2015
  • These days, much information is provided as a list of summaries through mobile services. In this regard, users consume information in which they are interested by observing the list and not by expressing their interest explicitly or implicitly through rating content or clicking links. Therefore, to appropriately model a user's interest, it is necessary to detect latent interest content. In this study, we propose a method for reasoning latent interest of a user by analyzing mobile content consumption logs of the user. Specifically, since erroneous reasoning will drastically degrade service quality, a unanimity ensemble method is adopted to maximize precision. In this method, an item is determined as the subject of latent interest only when multiple classifiers considering various aspects of the log unanimously agree. Accurate reasoning of latent interest will contribute to enhancing the quality of personalized services such as interest-based recommendation systems.