Efficient Osteoporosis Prediction Using A Pair of Ensemble Models |
Choi, Se-Heon
(Dept. of Computer Science and Engineering, Kangwon National University)
Hwang, Dong-Hwan (Department of Research and Development, ZIOVISION Co. Ltd) Kim, Do-Hyeon (Dept. of Computer Science and Engineering, Kangwon National University) Bak, So-Hyeon (Dept. of Radiology, Kangwon National University School of Medicine) Kim, Yoon (Dept. of Computer Science and Engineering, Kangwon National University) |
1 | Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol. 2020 Jun;30(6):3549-3557. doi: 10.1007/s00330-020-06677-0. Epub 2020 Feb 14. PMID: 32060712. DOI |
2 | GEIRHOS, Robert, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018. |
3 | Kim M., Park J., Na S., Park C.M., Yoo D. (2020) Learning Visual Context by Comparison. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision - ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_34 DOI |
4 | CHOLLET, Francois. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1251-1258. |
5 | Wani IM, Arora S. Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey. Med Biol Eng Comput. 2020 Sep;58(9):1873-1917. doi: 10.1007/s11 517-020-02171-3. Epub 2020 Jun 25. PMID: 32583141. DOI |
6 | TAN, Mingxing; LE, Quoc. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. PMLR, 2019. p. 6105-6114. |
7 | Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol. 2020 Jul;30(7):4107-4116. doi: 10.1007/s00330-020-06679-y. Epub 2020 Feb 19. PMID: 32072260; PMCID: PMC7305250. DOI |
8 | Smith AD. Screening of Bone Density at CT: An Overlooked Opportunity. Radiology. 2019 May;291(2):368- 369. doi: 10.1148/radiol.2019190434. Epub 2019 Mar 26. PMID: 309 17293. DOI |
9 | HE, Kaiming, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770-778. |
10 | DOSOVITSKIY, Alexey, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. |
11 | SZEGEDY, Christian, et al. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2818-2826. |
12 | SELVARAJU, Ramprasaath R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 618-626. |
13 | Ferizi U, Honig S, Chang G. Artificial intelligence, osteoporosis and fragility fractures. Curr Opin Rheumatol. 2019 Jul;31(4):368-375. doi: 10.1097/BOR.000000000000060 7. PMID: 31045948; PMCID: PMC7282383. DOI |
14 | Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017 Mar;4(1):46-56. doi: 10.5152/eurjrheum.2016.048. Epub 2016 Dec 30. PMID: 28293453; PMCID: PMC5335887. DOI |
15 | Mitchell PJ. Fracture Liaison Services: the UK experience. Osteoporos Int. 2011 Aug;22 Suppl 3:487-94. doi: 10.1007/s00198-011-1702-2. Epub 2011 Aug 17. PMID: 21847771. DOI |
16 | Wu J, Qu Y, Wang K, Chen Y. Healthcare Resource Utilization and Direct Medical Costs for Patients With Osteoporotic Fractures in China. Value Health Reg Issues. 2019 May;18:106-111. doi: 10.1016/j.vhri.2018.11.008. Epub 2019 Mar 23. PMID: 30909083. DOI |
17 | Lee, JaeWon, DoHyeon Kim, and Yoon Kim. "Online Video Synopsis via Multiple Object Detection.", Journal of the Korea Society of Computer and Information, Vol. 24, No. 8, pp. 19-28, Aug. 2019. DOI: https://doi.org/10.9708/jksci.2019.24.08.019 DOI |
18 | D.-H. Hwang, G.-S. Moon, and Y. Kim, "SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation," Journal of the Korea Society of Computer and Information, vol. 26, no. 4, pp. 29-37, Apr. 2021. DOI |
19 | ISLAM, Md Amirul, et al. Shape or texture: Understanding discriminative features in cnns. arXiv preprint arXiv:2101.11604, 2021. |