• Title/Summary/Keyword: Model Based Adaptive Control

Search Result 668, Processing Time 0.018 seconds

Adaptive Control Based on Speed-Gradient Algorithm (Speed Gradient 알고리즘을 이용한 적응제어)

  • 정사철;김진환;이정규;함운철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.39-46
    • /
    • 1994
  • In this paper, three types of parameter update law which can be used in model reference adaptive control are suggested based on speed-gradient algorithm which was introduced by Fradkov. It is shown that the parameter update law which was proposed by Narendra is a special from of these laws and that proposed parameter update laws can insure the global stability under some conditions such as attainability and convexity. We also comment that the transfer function of reference model shoud be positive real for the realization of parameter update law.

  • PDF

Discrete Model Reference Adaptive Control based on Lyapunov's Stability Theory (Lyapunov 안정도이론에 기초를 둔 이산기준모델 적응제어)

  • 함운철;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.942-947
    • /
    • 1987
  • In this paper, we suggest a new adaptive control theory for discrete-time single-input single output systems based on the Lyapunov's stability theory by using the fact that the transfer function of the model is strictly positive real. And also, obervers are used in the structure of controller. The result of computer simulation shows that the proposed algorithm can be applied to both stable and unstable plants.

  • PDF

Model Reference Adaptive Control Using Adaptive Observer (적응 관측기를 이용한 기준 모델 적응제어)

  • Hong, Yeon-Chan;Kim, Jong-Hwan;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.625-630
    • /
    • 1986
  • In this paper, an adaptive observer based upon the exponentially weighted least-square method is implemented in the design of a model reference adaptive controller for an unknown time-invariant discrete single-input single-output linear plant. The adaptive observer estimates the padrameter vectors and initial state vector. The control input is determined so that the output of the plant converges to the output of the stable model reference.

  • PDF

A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS) (적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구)

  • Tak, Kil Hun;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

CAN-based Feedback Control System Applied to Korean high-speed Train Pressurization System considering Network Delay (지연시간이 고려된 CAN 기반 피드백 제어시스템의 한국형 고속전철 여압시스템 적용)

  • Kwak, Kwon-Chon;Kim, Hong-Ryeol;Kim, Joo-Min;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2445-2447
    • /
    • 2002
  • In this paper, CAN-based feedback control system is proposed for the pressurization system of korean high-speed train. The control performance of the system is evaluated. According to the requirement of the pressurization system A process model considering network delay and an adaptive PID control method based on the process model are proposed here. And it is shown that the proposed adaptive PID control method considering the network delay has on adequate feature compared to some other existing methods consequently it can be considered to be applied the pressurization system of korean high-speed train.

  • PDF

Robust Sensorless Control for Induction Motor Drives Fed by a Matrix Converter with Model Reference Adaptive Control (매트릭스 컨버터를 이용한 유도전동기 구동장치의 기준모델 적응제어기법 기반의 강인한 센서리스 제어)

  • Sim, Gyung-Hun;Huh, Sung-Hoi;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.610-616
    • /
    • 2008
  • This paper presents a new robust sensorless control system for high performance induction motor drives fed by a matrix converter with variable structure. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by a variable structure approach based on model reference adaptive scheme. A Reduced Order Extended Luenberger Observer(ROELO) is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor (디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.