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Model Reference Adaptive Control Using

Adaptive Observer
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Abstract

In this paper, an adaptive observer based upon the exponentially weighted least-square
method is implemented in the design of a model reference adaptive controller for an unknown

time-invariant discrete single-input single-output linear plant.

The adaptive observer estimates

the parameter vectors and initial state vector. The control input is determined so that the out-
put of the plant converges to the output of the stable model reference.

1. Introduction

The plant parameters are often unknown
and the state vectors are not always directly
measurable. In such cases, an adaptive observer
is a method of reconstructing the state vectors
of an observable unknown linear plant through
parameter estimates. The adaptive observers of
Kreisselmeier [1] and Suzuki [2] are derived
in the parametrized form on the basis of a
Luenberger observer[3].

In this paper, we derive the discrete adaptive
observer which estimates the parameter vectors
and initial state vector based upon the state
variable filter, The obse ver of the present
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paper is constructed in the parametrized
form, and the adaptation scheme for para-
meter and initial state adjustment is given by a
set of recursive equations which are derived
on the basis of an exponentially weighted least-
square method, The initial state estimates[4]
guarantee more fast convergence of all esti-

mates,

Also this paper applies the adaptive observer
to the model reference adaptive control
scheme. The plant output does not converge

to the model output which has a pole at z=1
and converges very slowly to the model out-
put which has a pole near z=1 by the Suzuki’s
control law[2]. Therefore, in this paper, the
control input is determined so that the error
between the model output and the plant out-
put is directly equal to zero. The computer
simulation results demonstrate the effectiveness
of the adaptive observer and control law.
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II. Design of model reference adaptive
controller

Consider a linear time-invariant nth order
single-input single-output discrete minimum
phase system described by

x(k+1) = Ax(k)+bu(k) , x(O)=x0 )

y(k) = ¢ Tx(k)

where x(k) is an nxl state vector, u(k) and y(k)
are the scalar input and output respectively,
and A, b, and ¢ are in the observable canonical
form expressed as

f .

X -1

A= |a T"P"J va=lapag, caglT
L | 0

b= by, by, —---- bl b F0 (2)

c= [1,0,----- 01T

where ay and bi are the unknown constant
parameters.

Expressing the plant by the difference
equation for y(k) yields

n
y(k) = f:l aytk=i)+ 2 byutk—D)  (3)
i= i=

Expressing the model by the difference
equation for model output M (k) yields

n n
yM&K) = T aypypk—i+ B by r(k—i)

i=1 i=1 (4)
where r(k) is the bounded reference input and
api and bMi are the constant parameters to
be specified such that the reference model
yields a stable and desired response to (k).
The objective of the model reference adaptive
control is to adjust the control input u(k) so
that the plant output y(k) follows the model
output y x).

Therefore, letting e(k) = y,(k) — y(k),
we have

n
e(k) = .Z] lapgi¥p (k=D+byper(k—i)
l=

—a;y(k—i)—b,u(k—i)] )
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Defining the estimates of 3 and bi as Ei &)
and bi (k), respectively and adjusting u(k) so
that e(k) converges to zero, we have

n
u(k) = '21 [apg; Ypg(k—it Dby gr(k—i+1)
1=
— a(k)y(k—i+1)]

n - —~
- Z, b (0 ulk—iD] /b, () (6)

The plant output does not converge to the
model output which has a pole at z=1 and
converges very slowly to the model output
which has a pole near z=1 in Suzuki[2]. The
control input of (6), however, guarantees that
y(k)-yM(k) for all stable AM’s.

III. Description of the adaptive observer

Introducing an nxn stable matrix F defined
by
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the state equation of (1) can be rewritten as
x(k+1)=Fx(k)+0, y(k)+0, u(k), x(0)=x, (8)
where
0,=a-f,0,=b 9

Thus we can identify the unknown para-
meters a, and b, by identifying ©, and O, .

The purpose of an adaptive observer is to
adaptively identify the unknown parameters
®; and ©, and to reconstruct the state of the
unknown system using the input and output
data only.

The z-transform of (8) becomes

X(2)=(zI-F) 1 [0, Y(2)+®, U(z)+zx,] (10)

Now define V;(z) and V4 (z) as the follow-
ing equations

Vi(2)=(zI-F 1)1 Y(z) an
V2 (2)=(z1-F 1) U(z)
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The above equations define the nxn matrices
vi (k) and v, (k) as the solutions of the follow-
ing difference equations

v, (k+1)=F Ly, (K)+Iy(k), v, (0)=0
va(k+1)=F Ty, (K)+Iu(k), v,(0)=0

(12)

Substituting (11) into (10), we have
X(2)=V, (2)T©; +V(2) 1@, H(z1-F) V2xo
(13)
Now we consider the initial state response.

The initial state response decays as k — oo but
leads to a slow convergence rate, We define

V3 (2)=(z1-F )12 (14)
which becomes
va(k+1)=F Tv3(k), v3(0)=I (15)

Seperating the components of vi(k) and the
initial state x¢ as

v3(K) = [v3 (K),vap ()] T (16)

x0=[Xo1 , Xo5 ) T , X1 =y(0)

we have the inverse z-transform of (13) as
follows

x(k)=v(k) TO+v3; (K)xor a7

where

vi)=lv; BT, vp (10T, v 1 T
0=(07.07 x5 T

From (17), we can construct the estimate of
the state vector x(k) as follows

X(k)=v(k) TO(K)+v3; (K)xoy (18)
where é(k) is the estimates of @ which is the
parameter vectors and initial state vector.

The z-transform of (8) for Y(z) becomes

Y(z)=cT(zI—F)'l [0, Y(2)+O, U(z)+zx0] (19)

Now define W, (z) and W,(z) as the follow-

(627)
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ing equations
W, (2)=(zI-F1)! cY(2)- (20)
W, (2)=(z1-F1)'! cU(2)
which represents the state variable filter. The

above equations define the nx1 state vectors
wy (k) and w,(k) as the solutions of the follow-
ing difference equations

wy (k+1)=F Twy (k)+cy(k), wy (0)=0
wa(k+1)=F Lw, (k)+cu(k), w,(0)=0

(21

Substituting (20) into (19), we have

Y(2)=W, (2)10, +W,(2) 1@, +c T (21-F) 1 2x,

(22)

Now we consider the initial state response,
We have

W (2)=(zI -F V) 1z¢ (23)
which becomes
w3 (k+ 1D=F Tw (k), w3 (0)=[1,0, -, 0] T=¢
(24)
Seperating the components of w3 (k) as
wa (k)=[Way (), wap ()11 T (25)

we have the inverse z-transform of (22) as
follows

y(K)=w(k) [@+w3; (K)y(0) (26)
where

w(k)=[w, )T w, ()T, wa (i)T1 T

From (26), we can construct the output
of the observer as follows

F(k)=w(k) T Ok Y+ way (K)y(0) 27
The adaptive observe adjusts @(k) so that

V(k) converges to y(k). As a result, O(k)
converges to ©.
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IV. Derivation of the adaptation scheme

The adaptation scheme for the estimates of
the parameter vectors and initial state vector
based upon the exponentially weighted least-
square method [2] will be described.

Now we introduce the criterion function
J(k) as follows and the estimate &(K) is deter-
mined so that J(k) becomes minimum at each
k.

K K T : 2
J(k)=j§1[ A (y()—w() O(k)—w3; ()y(0)]

(28)

where A is a weighting coefficient such as

0 <A<I. Letting the gradient of J(k) with
respect to O(k) be zero yields

1 A2K=1) 4y (vG)—w) TOK)~wa; ()y(0)=0

i

i
(29

Equation (29) can be represented by
WL WO, K TO=WOL YL K)  (30)

where

WL, K=IE T w(), X2 w(2), - wk)] (31)
YOO K=K (y(1)-ws  (Dy(0) A2
(¥(2)-w3 1 (2)y(0)), , y(K)ws, (K)y(0)] T (32)

It WA, KOWA, k)T is invertible, (k) is given by

O(k)=T (A, )W\, K)Y(X, k) (33)
where
IO K)=[WO, WL k)T ! (34)

Using the inversion lemma, equations (33)
and (34) is described as follows

O(k)=0(k-N+T (A, K)w(k)(y(k)-ws; (k)
y(0)-w(k) T O(k-1)) (35)

(628)
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(A k—1) TDOK-1)
rog-TAk=D 2 Y
i 2 TF()\,k—l)
Hw(k) 37 w(k)
(36)

The initial value of I" (A, k) should be set as

(A, 0)=d%1 d>>1 37D

so that (36) is applicable for all k. From (6),
if the reference input (k) is sufficiently rich[2] .
so is the input u(k). Thus W\, K)W(A, k)Tis
non-singular when k = 3n-1 and the plant is
completely controllable.

We now discuss the stability of the overall
system. When I (A, k) converges to its true
value, ©(k) converges to

[W(A, K)W(A, k)T]'1 [WA, K)Y(A k)] €38)
From equations (26) and (32), Y(A, k) becomes
YO, k=W, kT e (39)

Therefore, O(k) converges to ® and y(k) con-
verges to y(k). When (E)(k) converges to O,
a;(k) and Bi (k) of (6) converge to a; and b,
respectively, Thus u(k) of (6) is a control input
which makes e(k)=yM (k) -y(k) converge to
Zero. Consequently u(k) guarantees that
y(k) =y (k).

The schematic diagram of the model refer-
ence adaptive controller is shown in Fig, 1.

ulk)

()G (k Yoy, UJ1(0)

8(x)

|
5

Fig. 1. Schematic diagram of the model reference

adaptive controller.
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Y. Computer simulation studies
We set the plant to be controlled as follows.

1.52 11 0.43
x (k)+ u(k)
0] 35

x(k+1)=
(40)
y(k)=[1,0] x (k)

The weighting coefficient A, f;, f,, and
[ (A, 0) are given by /0.5, 1.49, -0.55, and
1001, respectively. The initial state is given by
xo=[5, -5]. All initial estimates of the para-
meter vectors are equal to zero except that
b, (0)=0.2.

In Fig. 2 (a) and Fig. 2 (b), x; (k) - X; (k)
and x, (k) - X, (k) are plotted, respectively.
Also, the estimates of the parameter vectors
and initial state vector are shown in Fig. 3. The
observer of the present paper can reconstruct
the state vectors of an observable unknown
plant through parameter estimates.

We set the parameters of the model which
has a pole at z=1 as follows,

ay =15, aM2=-0.5, le=l.0 M2_0 0(41)

The reference input r(k) is given by
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Fig. 2. State errors.
(a) Xl(k)*’;l(k).
h) x,(k) — %, (k).
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Fig. 3. Estimates of the parameter vectors and
initial state vector.

r(k)=sin(0.2k )+sin(0.5k) (42)

Fig. 4 (a) shows that with this model the
plant output does not converge to the model
output by the Suzuki’s control law. The plant
outputs without and with estimates of the
initjal state are shown in Fig. 4 (b) and (c),

respectively. The convergence of the plant
g
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"." v (k)
(¢) aN .' yq(k)
Fig. 4. Plant output and model output.
{a) by the Suzuki’s control law.
‘b) by the control law of eq.(6) without
estimates of the initial state.
fe) with estimates of the initial state.
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output to the model output is more fast when
the estimates of the initial state are included.
When k=40 the parameters of (40) are changed
into

a,=1.70, a,=-0.74, b; =0.47, b,=-0.39  (43)

Fig. 4 (b) and (c¢) show this effect on the
plant output,

V1. Conclusion

The model reference adaptive controller is
implemented on the basis of a discrete adaptive
observer. The observer estimates the parameter
vectors and initial state vector in the para-
metrized form. Consequently the observer is
easy to implement.

The control input u(k) is synthesized so that
the error between the model output and plant
output is directly equal to zero. Therefore, the
plant output has a fast rate of convergence and
converges to the model output for all stable
AM ’s.
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