• Title/Summary/Keyword: Mode frequency

Search Result 4,300, Processing Time 0.038 seconds

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

ZVS Phase Shift Full Bridge Converter Design with 2kW Output (2 kW 출력을 갖는 영전압 스위칭 위상 천이 풀 브리지 컨버터 설계)

  • Hwang, Kyu-Il;Kim, Il-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.523-530
    • /
    • 2018
  • It has been studied over the long time for the high efficiency and high power density of the power converter. It is possible to obtain higher power conversion efficiency and small volume by increasing switching frequency, however, the switching loss is also increased. The soft switching technique can overcome of the above deficiency. The design and analysis method for ZVS(Zero Voltage Switching) Phase Shifte Full bridge converter is presented in this paper. The power transfer depends on the phase difference between two legs of the power stage and the maximum power conversion efficiency is achieved by the optimum leakage inductance value. The waveform of the current and voltage of the operational mode is analysed and the corresponding switch status is plotted as on/off status. A ZVS full bridge converter for a communication rectifier with 2kW output power is implemented and its performance are verified through PSIM software simulation and experimental results.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Additional Thermometer Code Locking Technique for Minimizing Quantization Error in Low Area Digital Controlled Oscillators (저면적 디지털 제어 발진기의 양자화 에러 최소화를 위한 추가 서모미터 코드 잠금 기법)

  • Byeongseok Kang;Young-Sik Kim;Shinwoong Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.573-578
    • /
    • 2023
  • This paper introduces a new locking technique applicable to high-performance digital Phase-Locked Loops (DPLL). The study employs additional thermometer codes to reduce quantization errors in LC-based Digital Controlled Oscillators (DCO). Despite not implementing the entire DCO codes in thermometer mode, this method effectively reduces quantization errors through enhanced linearity. In the initial locking phase, binary codes are used, and upon completion of locking, the system transitions to thermometer codes, achieving high frequency linearity and reduced jitter characteristics. This approach significantly reduces the number of switches required and minimizes the oscillator's area, especially in applications requiring low DCO gain (Kdco), compared to the traditional method that uses only thermometer codes. Furthermore, the jitter performance is maintained at a level equivalent to that of the thermometer-only approach. The efficacy of this technique has been validated through modeling and design at the RTL level using SystemVerilog and Verilog HDL.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Changes in the Characteristics of the North Pacific Jet as a Conduit for U.S. Surface Air Temperature in Boreal Winter across the Late 1990s

  • Se-Yong Song;Sang-Wook Yeh;Hyun-Su Jo
    • Journal of Climate Change Research
    • /
    • v.34 no.16
    • /
    • pp.6841-6853
    • /
    • 2021
  • The leading modes of the North Pacific jet (NPJ) variability include intensity changes and meridional shifts in jet position on low-frequency time scales. These leading modes of NPJ variability are closely associated with weather and climate conditions spanning from Asia to the United States. In this study, we investigated changes in the NPJ's role as a conduit for U.S. surface air temperature (SAT) anomalies during the boreal winter across the late 1990s. We found that the leading mode of NPJ variability changed from the NPJ intensity changes to meridional shifts in NPJ position across the late 1990s. It leads to the change in the role of the NPJ as a conduit for U.S. SAT anomalies. Before the late 1990s, the variability of NPJ intensity significantly impacted western U.S. SAT anomalies related to the anomalous surface cyclonic circulation over the North Pacific. After the late 1990s, however, the variability of the NPJ's meridional shift significantly influenced the eastern U.S. SAT anomalies in association with the anomalous surface cyclonic circulation over the northern North Pacific. Further analysis and model experiments revealed that the western to central North Pacific Ocean has been warming since the late 1990s and modulates atmospheric baroclinicity. This phenomenon mainly leads to a northward NPJ shift and implies that the eddy-driven mechanism on the NPJ's formation, which acts to enhance the meridional variability of NPJ position, becomes dominant. We conclude that this northward shift of NPJ could have contributed to enhancing the NPJ's meridional shift variability, significantly influencing the eastern U.S. SAT anomalies since the late 1990s.

SVC Based Multi-channel Transmission of High Definition Multimedia and Its Improved Service Efficiency (SVC 적용에 의한 다매체 멀티미디어 지원 서비스 효율 향상 기법)

  • Kim, Dong-Hwan;Cho, Min-Kyu;Moon, Seong-Pil;Lee, Jae-Yeal;Jun, Jun-Gil;Chang, Tae-Gyu
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • This paper presents an SVC based multi-channel transmission technique. Transmission of high definition multimedia and its service efficiency can be significantly improved by the proposed method. In this method, the HD stream is divided into the two layer streams, i.e., a base layer stream and an enhancement layer stream. The divided streams are transmitted through a primary channel and an auxiliary channel, respectively. The proposed technique provides a noble mode switching technique which enables a seamless service of HD multimedia even under the conditions of abrupt and intermittent deterioration of the auxiliary channel. When the enhancement layer stream is disrupted by the channel monitoring in the mode switching algorithm, the algorithm works further to maintain the spatial and time resolution of the HD multimedia by upsampling and interpolating the base layer stream, consequently serving for the non disrupted play of the media. Moreover, the adoption of an adaptive switching algorithm significantly reduces the frequency of channel disruption avoiding the unnecessary switching for the short period variations of the channel. The feasibility of the proposed technique is verified through the simulation study with an example application to the simultaneous utilization of both Ku and Ka bands for HD multimedia broadcasting service. The rainfall modeling and the analysis of the satellite channel attenuation characteristics are performed to simulate the quality of service performance of the proposed HD broadcasting method. The simulation results obtained under a relatively poor channel (weather) situations show that the average lasting period of enhancement layer service is extended from 9.48[min] to 23.12[min] and the average switching frequency is reduced from 3.84[times/hour] to 1.68[times/hour]. It is verified in the satellite example that the proposed SVC based transmission technique best utilizes the Ka band channel for the service of HD broadcasting, although it is characterized by its inherent weather related poor reliability causing severe limitations in its independent application.

Relationships between Learning Modes and Knowledge Structures of Primary School Children: Reflected on the Concept Maps of the 'Structure and Function of Plant' Unit ('식물의 구조와 기능'에 대한 초등학교 아동들의 지식구조와 학습성향과의 관계)

  • Kim, Jong-Jung;song, Nam-Hi
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.796-805
    • /
    • 2002
  • This study examined the knowledge structure constructed by children before formal instruction, and successive changes in the structural complexity of knowledge during and after the learning of 'Structure and Function of Plant' unit. It also investigated how those changes were affected by children's learning modes. The researchers made the 5th graders draw the first draft of their concept map to see the pre-existing knowledge structure concerned with the unit and four more concept maps after completing every fourth lesson. And to see how long their knowledge structures were preserved, the researchers made children draw additional concept maps in 3 days, 3 months, and 7 months after completing the unit. Children drew their current concept maps on the basis of the previous one while learning the unit and without the previous one after completing the unit. Each concept map drawn by children showed the degree of their current understanding on the structures and functions of plants. The results revealed that only two levels of hierarchy and five relationships among the components of the first concept map(relationship, hierarchy, cross link and example) were proven to be valid in terms of conceptual relevance. Growth in the structural complexity of knowledge took place progressively throughout the unit and the effects of learning mode on the growth were favorably reflected in concept map scores of meaningful learners over time(relationship, cross link, example: p<.01, hierarchy: p<.05). Although there were some differences on the concept map scores between two types of learners, they commonly showed that knowledge restructuring had occurred apparently in the early periods from the 1st to the 6th lesson and had not occurred at all in the last period of the unit. The frequency of tuning was higher in rote learners than in meaningful learners throughout the unit, but the frequency of accretion was reverse. Concept map scores of rote learners constructed in the course of learning of the unit decreased little by little gradually in all the categories after completing the unit. However, the average total map score of meaningful learners increased a little more in 7 months than in 3 months after completing the unit. Therefore it can be inferred that meaningful learners construct more stable and well-differentiated knowledge structures than the rote learners.

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.