• Title/Summary/Keyword: Mode Switching

Search Result 1,343, Processing Time 0.026 seconds

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

Converter for Switched reluctance Motor Applied Soft Switching Mode by Partial Resonant Mothod (부분공진 소프트 수위칭기법을 적용한 스윗치드 리럭턴스 모터의 구공회로)

  • Kim, J.S.;Lee, B.D.;Kim, S.D.;Jung, G.H.;Kang, U.J.;Koh, H.S.;Lee, S.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2103-2105
    • /
    • 1998
  • Switched Reluctance Motor is simple structure which used Accel/Decel application field because of cheap cost and High efficiency. For driving this motor, it is essential to need position sensor and driving converter. so, many topology and sensor have been studied untill now. Asymmetric Bridge Converter which has been known for the best control and efficiency is used chopping to control current of motor coil according to changing of motor speed. But this is embossed as a fault because it come to bring switching loss due to rapid switching frequency. In this paper, I applied to Soft Switching Mode by Partial Resonant Method to compensate these fault and to show the usabilityness of low switching device.

  • PDF

Retardation Free In-plane Switching Liquid Crystal Display with High Speed and Wide-view Angle

  • Kang, Wan-Seok;Moon, Je-Wook;Lee, Gi-Dong;Lee, Seung-Hee;Lee, Joun-Ho;Kim, Byeong-Koo;Choi, Hyun-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • In this paper, we propose an in-plane switching (IPS) mode for liquid crystal displays (LCDs) that, in principle, is free of retardation of the LC cell. Basically, the optical configuration of the LC cell consists of an A-plate and an LC layer for switching between the dark and bright states. We could achieve a fast response time compared with the conventional in-plane LC cell because the free retardation condition of the proposed LC cell enables us to reduce the cell gap even by quarter-wave retardation without any change of the optimized LC material in the transmissive mode. Experiments for verification of the proposed in-plane switching LC cells have shown a significant reduction of the rising time and falling time simultaneously due to the small cell gap. Furthermore, we also proposed an optical configuration for wide viewing property of the retardation free IPS LCD by applying the optical films. We proved the wide-view property of the retardation free IPS LCD by comparing its optical luminance with the calculated optical property of the conventional IPS LCD.

A Study on the Conversion Time to Minimize of Transient Response during Inter-Conversion between Control Laws (제어법칙 간 상호 전환 시 과도응답 최소화를 위한 전환시간에 관한 연구)

  • Kim, Chongsup
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • The inter-conversion between different control laws in flight has a lot of risk. The SWM(Switching Mechanism) including logic and stand-by mode is designed to analyze the transient response of aircraft during inter-conversion between different control laws, based on the in-house software for non-real-time and real-time simulation. The SWM applies the fader logic of TFS(Transient Free Switch) to minimize the transient response of an aircraft during the inter-conversion, and applies the reset '0' type of the stand-by mode to prevent surface saturation due to integrator effect in the disengaged flight control law. The transition time is also important to minimize the objectionable transient response in the inter-conversion, as well as the transition control law design. This paper addresses the results of non-real-time simulation for the characteristics of transient response to different transition time to select the adequate transient time, and the real-time pilot evaluation, using SSWM(Software Switching Mechanism) and HSWM(Hardware Switching Mechanism), which is met for Level 1 flying qualities and assures safety of flight.

Design of Parasitic Inductance Reduction in GaN Cascode FET for High-Efficiency Operation

  • Chang, Woojin;Park, Young-Rak;Mun, Jae Kyoung;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.133-140
    • /
    • 2016
  • This paper presents a method of parasitic inductance reduction for high-speed switching and high-efficiency operation of a cascode structure with a low-voltage enhancement-mode silicon (Si) metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-voltage depletion-mode gallium nitride (GaN) fielde-ffect transistor (FET). The method is proposed to add a bonding wire interconnected between the source electrode of the Si MOSFET and the gate electrode of the GaN FET in a conventional cascode structure package to reduce the most critical inductance, which provides the major switching loss for a high switching speed and high efficiency. From the measured results of the proposed and conventional GaN cascode FETs, the rising and falling times of the proposed GaN cascode FET were up to 3.4% and 8.0% faster than those of the conventional GaN cascode FET, respectively, under measurement conditions of 30 V and 5 A. During the rising and falling times, the energy losses of the proposed GaN cascode FET were up to 0.3% and 6.7% lower than those of the conventional GaN cascode FET, respectively.

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

A Family of Zero Current and Zero Voltage Switching Bidirectional DC-DC Converter with Soft Switched Auxiliary Circuit (소프트 스위칭 방식의 보조 회로를 갖는 영전류 및 영전압 스위칭 양방향 DC-DC 컨버터)

  • Lee, Il-Ho;Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.438-439
    • /
    • 2011
  • In this paper, soft switching bidirectional DC-DC converter is proposed. The proposed topology is added two auxiliary switches, two resonant capacitors and one resonant inductor to convectional bidirectional DC-DC converter. Therefore, this proposed topology can reduce switching loss of each power switch by ZVS (Zero Voltage Switching) and ZCS (Zero Current Switching). We have performed mode analysis, simulation and experiment for the proposed topology.

  • PDF

Pull-in Characteristics of Delay Switching Phase-Locked Loop (Delay Switching PLL의 Pull-in 특성)

  • 장병화;김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 1978
  • A delay switching PLL (DSPLL) is proposed for improvement of the frequency acquisition Performance (pull-in range) while keeping a narrow bandwidth LPF. It has, between the phase detector and the LPF, just a simple RC delay circuit, a switch and another phase detector controlling the switching time. For the common second order PLL, the pull-in capability of the DSPLL is analyzed approximately, without considering additive white noise effect, and verified experimentally. It is shown that the delay switching extends the pull-in range significantly, as much as a half of lock-range. At the phase tracking mode, the delay switching does not function, to make the DSPLL be a normal PLL.

  • PDF

Critical Conduction Mode BOOST Type Solar Array Regulator (임계모드 부스트형 태양전력 조절기)

  • Yang, JeongHwan;Ryu, SangBurm;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.86-90
    • /
    • 2014
  • A DC-DC Converter operates in CCM(Continuous Coundcution Mode), DCM(Discontinuous Conduction Mode), CRM(Critical Conduction Mode). The CRM is boundary between CCM and DCM. If a DC-DC converter is designed to operate in CRM, its inductor volume can decrease and power loss which caused by switch and diode can decrease. In this paper, the DC-DC converter which operates in CRM is applied to a solar array regulator(SAR) for the satellite. The switching frequency of the CRM boost SAR changes according to input and output condition. The switching frequency limit logic is applied to limit the maximum switching frequency. Meanwhile, the small signal transfer function of the CRM boost SAR is simple, so the controller design is also simple. In this paper, the small signal transfer function from control reference to solar array voltage is induced. And the voltage controller is designed based on the small signal transfer function. Finally, the CRM boost SAR is verified by simulation.