• Title/Summary/Keyword: Modal shape

Search Result 418, Processing Time 0.029 seconds

A Study on the Acoustic and Cavity-Tone in a Perforated Through-Tube Muffler (다공관 배기 소음기의 음향 모드와 공동음에 관한 연구)

  • Kwon, Y.P;Lee, D.H.;Oh, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • The objective of this study is do obtain the relationship between the acoustic mode and cavity tone induced in a perforated tube exhaust muffler. First, the modal frequency for the axisymmetric radial mode and the mode shape have been computed using the impedance model for the perforated tube. Then, experiment has been perfonned for the onset frequencies of the cavity tone for various design parameters and through-flow. The theoretically obtained modal frequencies are well consistent with the measured onset frequencies of the cavity tone, showing that the cavity tone is induced by the axisymmetric radial mode. And it is found that the modal frequency of a perforated tube muffler is much lower than that of a simple expansion chamber.

  • PDF

Propagation of floor impact vibration in a 1:10 scale model of a test structure (1:10 축척 시험동 구조 모형의 바닥충격 진동 전달)

  • Lee, Pyoung-Jik;Yoo, Seung-Yup;Kim, Jae-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1455-1458
    • /
    • 2007
  • Vibration characteristics of concrete slabs were investigated using a 1:10 scale model and finite element method. A 1:10 scale model of a test building with 150 and 200mm slab thicknesses was made of acrylic materials. Modal test was conducted to investigate mode shape and modal frequencies. Results show that the mode shapes of two slabs with different thickness are similar each other, whereas natural frequency is different. Through modal analysis using FEM, it was revealed that both mode shapes and natural frequencies calculated from the FEM model are similar to those of the scale model measurement. It was also found that natural frequencies increased with increment of the slab thickness.

  • PDF

A study on natural vibration characteristics of small and high speed spindle system with a long work piece (세장비(細長比)가 큰 가공 소재를 포함한 소형 고속 스핀들 시스템의 고유진동 특성 연구)

  • Lee, Jae-Hoon;Kim, Mu-Su;Park, Seong-Hun;Lee, Shi-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.184-185
    • /
    • 2008
  • Modal analysis is an important and essential process in design of a high speed machining center. Generally, modal analysis of a built-in spindle system has not taken the work piece's shape and dimension into consideration. Since small and long work pieces influence greatly the natural frequency of the entire system, the high speed spindle system which continuously makes small machine parts by long work pieces for improvement of machining time has to consider the machining work pieces. Therefore frequency characteristics of the spindle system with long work pieces are studied in this paper.

  • PDF

Developing the Impact Testing Module with LabVIEW (랩뷰를 이용한 FFT 분석기의 충격시험모듈 개발)

  • Choi, Ki-Soo;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.885-890
    • /
    • 2007
  • Fast Fourier Transformation(FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Vibration test using impact hammer is typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system. In this thesis, impact testing module for NI-PXI equipment is developed. The analyzing and visualizing module are developed with LabVIEW tool. A user can see quickly and easily modal shape of system after analyzing acquired data. This developed module will be expected to build up more convenient and serviceable measurement system.

  • PDF

Experimental Modal Analysis for Understanding Dynamic Characteristics of Bus Full BIW Assembly (버스차체 동특성 파악을 위한 실험 모드해석)

  • Lee, Joon-Ho;Kim, Gyeong-Ho;Park, Mi-You;Kim, Kyoung-Won;Song, Kyoung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.314.2-314
    • /
    • 2002
  • It is necessary first to understand dynamic characteristics of a bus full BIW assembly for fatigue endurance analysis. FE model has been used usually for analyzing the dynamic behavior of structures. A lot of experience and effort, however, is necessary to make a credible FE model. Experimental modal analysis of structures has been performed to verify the credibility of initial FE model and to update the model. (omitted)

  • PDF

Double Fourier Sine Series Method for The Free Vibration of a Rectangular Plate (이중 사인 시리즈법에 의한 직사각형 평판의 자유 진동해석)

  • 윤종욱;이장무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.771-779
    • /
    • 1996
  • In this paper, double Fourier sine series is used as a modal displacement functions of a rectangular plate and applied to the free vibration analysis of a rectangular plate under various boundary conditions. The method of stationary potential energy is used to obtain the modal displacements of a plate. To enhance the flexibility of the double Fourier sine series, Lagrangian multipliers are utilized to match the geometric boundary conditions, and Stokes' transformation is used to handle the displacements that are not satisfied by the double Fourier sine series. The frequency parameters and mode shapes obtained by the present method are compared with those obtained by MSC/NASTRAN and other analysis.

  • PDF

A Study on the Modal Parameters of the scaled building structure (축소 건물모델의 모달 파라미터 추정에 관한 연구)

  • Park, Hae-Dong;Park, Jin-Il;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.571-575
    • /
    • 2000
  • The physical properties of the spatial model, mass, stiffness and damping matrix, can be defined by a specific natural frequency, damping ratio and mode shape. These modal parameters can be determined from a set of frequency response function(FRF) measured by exciting the structure and measuring the responses at various points around the structure. In this paper, The Transfer Matrix is obtained by experimental modal analysis for the 3-story scaled building model which TMD is installed on top and the physical properties of the spatial model is determined using the residue matrix and the location of poles from FRF measurement using polynomial curve fitting methods.

  • PDF

Modal Tuning of HDD suspension system (HDD 서스펜션의 모달 튜닝)

  • Kim, Dong-Woohn;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1583-1588
    • /
    • 2000
  • The dynamic characteristics of a HDD suspension system are investigated by finite element analysis and experimental modal analysis. A finite element model of the suspension Type850 was developed for unloaded case. The calculated vibration modes were compared with measurements and agree well in shape and frequency except some local modes. Local thickness and Young's modulus of the finite element model are updated by modal tuning method to develop the precise FE model. A sensitivity matrix of the natural frequencies for some design variables was calculated using finite difference method. Most natural frequencies calculated by the tuned FE model coincide with the measurements and the errors between them are less than 2%.

  • PDF

Vibration Characteristics of Tires for Light Truck (경상용차용 타이어의 진동특성)

  • 김용우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.102-108
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than their corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quite low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

Modal Analysis of Composite Trapezoidal Plates Undergoing In-plane Translational Acceleration (면내 병진 가속을 받는 복합재 사다리꼴 평판의 진동 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1486-1491
    • /
    • 2003
  • A modeling method for the modal analysis of a composite trapezoidal plate undergoing in-plane translational acceleration is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles, fiber orientation angle and the acceleration on the modal characteristics of the plate are investigated.