• 제목/요약/키워드: Modal dispersion

검색결과 32건 처리시간 0.022초

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석 (Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide)

  • 최지웅
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.208-212
    • /
    • 2009
  • 지면파는 해저면 음속이 깊이에 따라 일정할 경우 해저면 음속으로 진행하는 음파로 일반적으로 모드분산으로부터 설명된다. 모드분산은 도파관의 기하학적 구조에 의한 음파의 반사 및 굴절에 의해 발생되므로 본 논문에서는 지면파를 음선이론에 기초하여 모의하였다. 지면파는 일련의 선두파들의 조합으로써 해석될 수 있으므로 [Choi와 Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)], 음선 접근법을 이용하여 시간영역에서 여러 경로로 전파되는 선두파들의 채널 임펄스 응답과 선두파 신호의 컨볼루션을 취하여 지면파를 모의한다. 모의된 지면파는 광대역 시간영역 포물선 방정식 기법을 이용하여 모의된 지면파와 비교, 검증된다.

Identification of Complex Dispersion Relations in Cylindrical, Foam-Lined Ducts

  • Kim, Yong-Joe;Bolton, J. Stuart;Lee, Sung-Yop;Kang, Yeon-June
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1729-1734
    • /
    • 2000
  • Complex dispersion relations in a cylindrical, foam-lined duct were successfully identified by using an iterative Prony series method. Techniques for using the iterative procedure successfully are described in detail, particularly with regard to model order selection and the identification of parameter starting values. It is shown that modal wave speeds and spatial attenuations per wavelength can be derived from the complex dispersion relations obtained using the iterative procedure. In addition, a finite element simulation is shown to well represent corresponding experimental measurement in terms of modal wave speeds and spatial attenuations.

  • PDF

Modal Characteristics of Photonic Crystal Fibers

  • Lee, Yong-Jae;Song, Dae-Sung;Kim, Se-Heon;Huh, Jun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제7권3호
    • /
    • pp.188-192
    • /
    • 2003
  • The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Design of Optical Filters using Grating-Assisted Fiber Couplers (GAFCs)

  • Ho Kwang-Chun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.276-280
    • /
    • 2004
  • This paper first takes advantage of a rigorous modal transmission-line theory (MTLT) to analyze the filtering properties of optical waves guiding by grating-assisted fiber couplers (GAFCs). The numerical results reveal that MTLT serves as a suitable and powerful approach to evaluate systematically the dispersion properties and the characteristics of optical power transfer in GAFCs.

  • PDF

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

都市交通計劃 모델과 大氣汚染 擴散모델을 이용한 都市地域 大氣汚染 豫測 (Air Pollution Forecasting Using Urban Transportation Planning Models and Air Pollution Dispersion Models)

  • 董宗仁;趙康來;金良均;兪 浣
    • 한국대기환경학회지
    • /
    • 제2권2호
    • /
    • pp.31-40
    • /
    • 1986
  • Motor vehicle related air pollution has become more serious because of rapid increase of number of cars, specially in the urban area. The increase trend seems to be accelerated, however, the fact is that road conditions, parking facilities and traffic control systems are far behind coping with this situation. In spite of the lack of related basic data, urban transportation planning (UPT) and air pollution dispersion models were applied to predict air pollution level. In standard UPT model, trip generation, distribution, modal split and network assignment were estimated by experimental equations and appropriate models. The air pollution level in the central business area was believed to be higher and it will increase continuously due to the increase of traffic demand. To meet this situation, air pollution problem should be considered as a part of integrated plannings of urban plans or transportation plans as well as more stringent motor vehicle emission standards, have to be enforced.

  • PDF

유리직물/에폭시 복합재료 보의 내부구조와 충격굽힘진동특성 (Microstructure and Impactive Flexural Vibration Characteristics of Glass-Fabric/Epoxy Composite Beams)

  • 서지웅;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 춘계학술발표대회 논문집
    • /
    • pp.53.1-56
    • /
    • 1999
  • The vibration behavior of glass-fabric reinforced plastic(GFRP) composite beams subjected to various transverse impacts has been investigated as a function of fiber orientation and void fraction. Theoretical results of resonant frequency damping coefficient and modal amplitude dispersion using the Euler-beam theory were obtained along with the finite element analysis which were compared with experimental ones Consequently it was shown that the transverse vibration characteristics were largely affected by fiber orientation and void fraction.

  • PDF

단일 모드 광섬유의 Spot Size 측정에 관한 연구 (A Study of SPOT-Size Measurement in Single-mode Optical fibre)

  • 박호철;박한규
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1984년도 추계학술발표회논문집
    • /
    • pp.22-24
    • /
    • 1984
  • The mode spot size is a fundamental parameter of a single mode optical fibre which determines especially the spilces and the microbending loss. The spot-size measurement is recognised to be a useful mean to define the cut-off wavelength of single-mode fibres, ESI parameters and to predict the modal dispersion. To determine the ESI parameters, this paper is based on the use of a Ronchi ruling.

  • PDF