• 제목/요약/키워드: Modal Parameter Sensitivity

검색결과 45건 처리시간 0.026초

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Resonance Characteristics Analysis of Grid-connected Inverter Systems based on Sensitivity Theory

  • Wu, Jian;Han, Wanqin;Chen, Tao;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.746-756
    • /
    • 2018
  • Harmonic resonance exists in grid-connected inverter systems. In order to determine the network components that contribute to harmonic resonance and the composition of the resonant circuit, sensitivity theory is applied to the resonance characteristic analysis. Based on the modal analysis, the theory of sensitivity is applied to derive a formula for determining the sensitivities of each network component parameter under a resonance circumstance that reflects the participation of the network component. The solving formula is derived for both parallel harmonic resonance and series harmonic resonance. This formula is adopted to a 4-node grid-connected test system. The analysis results reveal that for a certain frequency, the participation of parallel resonance and series resonance are not the same. Finally, experimental results demonstrate that the solving formula for sensitivity is feasible for grid-connected systems.

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

Practical issues in signal processing for structural flexibility identification

  • Zhang, J.;Zhou, Y.;Li, P.J.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.209-225
    • /
    • 2015
  • Compared to ambient vibration testing, impact testing has the merit to extract not only structural modal parameters but also structural flexibility. Therefore, structural deflections under any static load can be predicted from the identified results of the impact test data. In this article, a signal processing procedure for structural flexibility identification is first presented. Especially, practical issues in applying the proposed procedure for structural flexibility identification are investigated, which include sensitivity analyses of three pre-defined parameters required in the data pre-processing stage to investigate how they affect the accuracy of the identified structural flexibility. Finally, multiple-reference impact test data of a three-span reinforced concrete T-beam bridge are simulated by the FE analysis, and they are used as a benchmark structure to investigate the practical issues in the proposed signal processing procedure for structural flexibility identification.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석 (Dynamic Analysis of Design Data for Structural Lap Joint)

  • 윤성호
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.57-74
    • /
    • 1998
  • 구조체의 연결부위에서 미지의 결합강성으로 인하여, 실험과 유한 요소법으로 구한 모달 매개변수들은 종종 일치하지 않는다. 본 논문은 실험으로 추출된 동특성 데이타에 근거하여, 해석적인 방법을 통해 새로운 모델링 방법을 제시하고 있다. 대표적인 연결방법으로 리벳을 이용한 Lap이음보에서 동강성을 측정하기 위한 비선형 진동실험이 제안 되었으며, 이를 Lap 이음판에 적용하기 위하여 동강성에 해당하는 설계변수로서 빔요소를 도입하였다. 이 유한요소 모델링은 범용 패키지인 PATRAN과 ABAQUS를 사용하였으며, 빔요소의 직경을 실험치의 고유진동수와 일치하도록 조절함으로써 직경의 최적치 경향을 관찰하였다. 제시된 모델링 기법과 기존의 모델링 기법으로 얻은 결과치들을 실험치와 비교하였다.

  • PDF

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

지상진동시험결과를 이용한 KC-100 항공기의 플러터 해석모델 보정 (Flutter Analysis Model Tuning of KC-100 Aircraft with the Ground Vibration Test Results)

  • 백승길;최용준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.191-195
    • /
    • 2011
  • The airframe ground vibration tests were conducted on the KC-100 aircraft according to the regulation requirement, KAS 23.629(a)(2) and the modal characteristics for the target modes were measured. To make FE model tuning, a design sensitivity approach with engineering judgment was implemented using MSC/Nastran and Attune, a genetic algorithm based parameter optimization software. Based on the comparison between initial prediction and test results, design variables such as beam cross-sectional properties and spring stiffnesses were devised. As the results, the correlation of the FE model to the GVT results was made appropriately, meeting the goal of matching the target frequencies within 5%.

  • PDF

목표지향 교통수단선택을 위한 연속형 교통망설계모형 (A Continuous Network Design Model for Target-Oriented Transport Mode Choice Problem)

  • 임용택
    • 대한교통학회지
    • /
    • 제27권6호
    • /
    • pp.157-166
    • /
    • 2009
  • 교통망설계문제(network design problem, NDP)는 교통체계(transportation system)을 최적화시키는 설계변수(design parameter, design variable)를 구하는 문제이다. 본 연구에서는 교통망설계문제를 조금 변환시킨 목표지향 교통망설계문제(target-oriented network design problem, target-oriented NDP)를 제시하고 이를 풀기 위한 기법도 제시한다. 목표지향 교통망설계는 교통운영자(traffic operator) 또는 관리자(travel manager)가 특정 교통정책 목표(target)를 미리 설정하고 이를 달성하기 위한 최적 설계변수를 찾는 문제이다. 즉, 일반적인 교통망설계문제(general NDP)는 총통행비용이나 순편익 등 특정목적함수를 최적화시키는 설계변수를 찾는데 반해, 목표지향 교통망설계(target NDP)는 사전에 설정된 목표수준(target level)을 달성하기 위한 설계변수를 구하는 문제이다. 본 연구에서 제시된 목표지향 교통망설계모형을 교통수단분담문제에 적용하여 모형을 평가한다.